PREX2/CREX Target Chamber

Silviu Covrig Dusa 17 May 2017 PREX2/CREX ERR2

Target Chamber Overview

- Prex and crex targets are at the same z-location (5°)
- 2 independent linear motion mechanisms on bellows, one cryogenic (for ²⁰⁸Pb and ⁴⁸Ca targets with 18 positions, stroke 76.25 cm) and one water cooled (for dummies + water cell with 6 positions, stroke of 33 cm)
- The target chamber will be Al made with 0.25" walls, 60.96 cm diameter and 33 cm long along the beam line
- The motion mechanisms are outside vacuum and serviceable without breaking vacuum
- Cu made cryogenic ladder will support 12 Pb targets (10 high purity ²⁰⁸Pb, 2 regular Pb), 2 Ca targets and 3 C targets

List of Targets

Water cooled

Cryogenically cooled

Optics Ladder		Production Ladder	
		Carbon hole	~0.1 g/cm ²
Carbon Hole	~0.1 g/cm ²	(9x) ²⁰⁸ Pb/diamond	0.5/0.25 mm
Watercell		²⁰⁸ Pb/graphite	0.5/0.25 mm
Thin C foil	0.1 g/cm ² 0.05 g/cm ²	⁴⁸ Ca (tilted)	1 g/cm ²
		- ⁴⁰ Ca	1 g/cm ²
Thin natural Pb		thick C	0.5 g/cm ²
Thin ⁴⁰ Ca	0.05 g/cm ²	Pb/diamond	0.5 mm
		Pb/graphite	0.5 mm

- The Pb target is low power, less than 100 W at 70 μA and the Ca target is high power, less than 400 W at 150 μA
- Coolant: 15 K 12 atm He gas from ESR
- 2 beam line gate valves and a purge system will protect the Ca target against a beam line vacuum break

Target System

- Design Authority for the prex/crex target system: Dave Meekins
- All vacuum seals are conflat or metal O-rings
- 2-stage alignment adjusters could position a target on the beam line to better than 1 mm (the cold/warm ladders will be aligned on the bench to fiducials on the chamber wall, the chamber will be aligned in the hall on the beam line)
- The ²⁰⁸Pb targets will be loaded on the bench in the Cu frame, the ⁴⁸Ca target will be installed in the hall in the Cu frame
- The coolant lines will accommodate the cryogenic ladder travel outside of vacuum (target group design)
- Target working group: Bob Michaels, Kent Paschke, Alan Gavalya, Dave Meekins, Wayne Sachleben, Ron Lassiter, Jessie Butler, Robin Wines, Silviu Covrig Dusa

Target Schedule

- Chamber shell design complete, manufacturing drawings done, SOW signed, in manufacturing now @jlab, estimated to be completed by the end of June 2017 (target group + machine shop)
- Motion mechanisms design 95% complete, estimated to be manufactured/procured in fall 2017
- Design work done by Wayne Sachleben and Ron Lassiter, engineering by Dave Meekins (DA)
- Full time design support provided by CFDFAC will end May 31, 2017
- CFDFAC will fund manufacturing of the target system
- The target will be built, installed and aligned by the target group with help from the collaboration
- Commissioning and operations are the responsibility of the collaboration
- A trained target operator will sit shifts and a target expert will be on-call 24/7 during daq

- 18 positions cryogenic prex target ladder
- Ladder length 654.05 mm, width 82.55 mm, depth 19.05 mm
- Pb target "housing" height 35.8 mm, width28.8 mm
- Pb target "beam face" height 19.05 mm, width 12.7 mm
- Distance between adjacent Pb targets housings 6 mm
- Coolant channel diameter 4.57 mmReserved 3 Ca loading positions
- Ca puck diameter 20 mm, thickness 5 mm, beam face diameter 16 mm, tilted 45 deg to beam axis

Transient CFD model

- Transient CFD model ran on a sandwich 250 μm-500 μm-250 μm C-Pb-C (diamond)
- Thermal contact C Cu frame on only one side of the sandwich, contact area 4 cm², considered ideal contact and diamond was assumed undegraded
- Diamond, Pb, Cu properties considered temperature dependent, taken from MPDB
- Coolant considered to be liquid He (LHe), inlet at 4.8 K, 2 atm, 10 g/s, constant properties
- Beam raster size 4x4 mm², beam spot considered of size 160 μ m, beam raster frequencies pairs considered (f_x, f_y) in Hz = (25080, 24960), (25140, 24900), (25260, 24780), the intrinsic beam spot is painted on the target sandwich with the raster frequencies
- The beam power deposition densities considered were for 140 μA and 70 μA respectively
- Time step for the simulation 2.11 μs
- The beam is considered full power starting at t = 0 s

Max Temperatures in Pb and C

60 40 20

0 E

0.2

0.4

0.6

0.8

Upper plot:

max temperature in Pb and diamond (C) vs. time at 140 μ A, at 70 μ A, fx – fy = 120 Hz, 240 Hz, 480 Hz and doubling of beam spot size

Lower plot:

power out through C-Cu interface at 140 μA and 70 μA beam current

1.2 time (s)

Max Temperatures in Pb and C

Pb Thermal Analysis

- In response to a question raised by an ERR committee member: consider LN2 as coolant to see if it lowers the max T in Pb compared to cold He
- The assessment to be done considering the prex2 cold ladder with 18 positions, one loaded with a sandwich diamond-Pb-diamond, where two diamond thicknesses will be considered, 150 μm and 250 μm
- Four coolant choices to be considered: LHe inlet at 10 g/s, 4.8 K, 2 atm; GHe inlet at 10 g/s, 15 K, 10 atm; LN2 inlet at 2 g/s, 77 K, 1 atm and GN2 inlet at 2 g/s, 78 K, 1 atm
- 2 beam raster sizes to be considered: 4x4 mm² and 5x5 mm², total heating power deposited in 150-500-150 sandwich 82 W@70 μA, total heating power deposited in 250-500-250 sandwich 92 W@70 μA beam current
- Steady-state thermal analysis

CFDFAC Thermal Analysis

Ca thermal analysis

- Coolant: 15 K, 10 g/s 10 atm He gas from ESR
- Target tilted 45°, beam raster assumed 1 mm by 4 mm, beam current 150 μ A, P \sim 368 W
- Temperature profile in Ca and a section through the Cu frame
- Ca melts at 1115 K

Summary

Item 1: The target system is on track to be manufactured by the end of 2017 and be ready for installation in spring 2018

Item 2: The target chamber will be protected against a beam line vacuum loss by 2 gate valves. The chamber will also be instrumented with an inert gas purge system

Item 3: There was no observed flow of melted Pb in PREX1.

- CFDFAC time-dependent thermal analysis for C-Pb-C system shows that 4 K cooling is not a cause for melting Pb even with 140 μA beam ON starting at t = 0s.
- Increasing the beam raster frequencies difference lowers the max temperature in Pb; also increasing the intrinsic beam spot size has the same effect
- max_T_Pb (we plan to use 15 K He coolant, 250 μm diamond foils):
 - 2 K lower with 4 K vs. 15 K He coolant
 - 100 K lower with 15 K He vs. 77 K LN2 coolant
 - 5 K lower with 5x5 mm² vs. 4x4 mm² beam raster (with good diamond)
 - 10 K lower for 250 µm diamond vs. 150 µm diamond (with good diamond)
 - 200 K lower for diamond vs. graphite
 - 20 K lower for beam raster frequencies difference Δf = 480 Hz vs 120 Hz
- max_T_Ca is estimated to be 203 K with 15 K He coolant, 1x4 mm² 150 μA beam, 45° tilted target with ideal thermal contact Ca-Cu and 300 K if the thermal contact is through a 200 μm layer of a thermal insulator with conductivity 5 W/m.K

Back-up Slides

14

contour-4 Static Temperature

1.74e+02

1 67 ... 02

The electron beam is moved on the target by a magnetic rastering system, if z is the beam line axis, then the raster deflects the beam along x and y-axes with triangular wave-functions of frequency fx and fy (~25 kHz)

Target area covered by the beam rastering system in the same amount of time for two cases of frequency difference between x and y axis wave forms for a square raster of amplitude 4 mm

