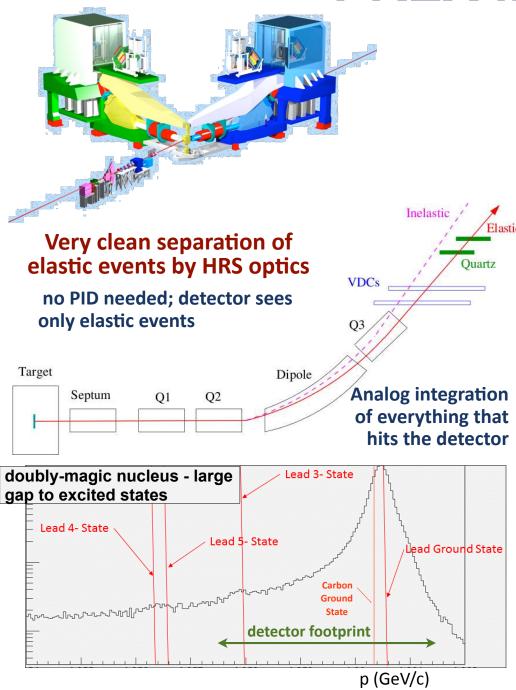
Overview of PREX/CREX Experiments

May 17, 2017

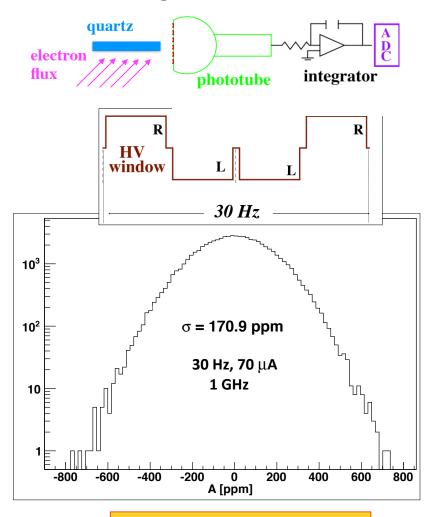
Kent Paschke

Introduction

This presentation: Introduction and overview of the PREX/CREX experimental design to orient those who are unfamiliar and highlight important features.


Next presentation: Seamus will summarize answers to the 2016 ERR recommendations.

Introduction to PREX-II/CREX
Change in CREX kinematics to simplify design
Developments since 2016 ERR


- running the septum
- scattering chamber design

Review of essential equipment

PREX in Hall A

Flux integration Technique

CREX: 50 MHz

HAPPEX-II: 100 MHz

PREX: 1 GHz

Qweak: 5 GHz

PREX/CREX Summary

PREX-2: 25+10 days, 3% stat, 0.06 fm

CREX: 35+10 days, 2% stat, 0.02fm

Achieved

PREX-I E=1.1 GeV, 5° A=0.6 ppm

Total Statistical	9%
Total Systematic	2.1%
Effective Q ²	0.5%
Inelastic Contribution	<0.1%
Target Backing	0.4%
Polarization	1.3%
Transverse Asym	0.2%
Detector Non-linearity	1.2%
Beam Asymmetries	1.1%
Charge Normalization	0.2%

PREX-II E=1.1 GeV, 5° A=0.6 ppm

Charge Normalization	0.1%
Beam Asymmetries*	1.1%
Detector Non-linearity*	1.0%
Transverse Asym	0.2%
Polarization*	1.1%
Target Backing	0.4%
Inelastic Contribution	<0.1%
Effective Q ²	0.4%
Total Systematic	2%
Total Statistical	3%

CREX E=1.9 GeV, 5° A = 2.28 ppm

Charge Normalization	0.1%
Beam Asymmetries	0.3%
Detector Non-linearity	0.3%
Transverse Asym	0.1%
Polarization	0.8%
Target Contamination	0.2%
Inelastic Contribution	0.2%
Effective Q ²	0.8%
Total Systematic	1.2%
Total Statistical	2.4%

Total charge on target (includes commisioning):

82 C

Proposed charge on target (includes commissioning):

170 C

*Experience suggests that leading systematic errors can be improved beyond proposal

What We Learned in PREX-I

What Worked:

New Septum

We now know how to tune it to optimize FOM

HRS Tune

We have a tune and good first-guess optics matrix for a tune optimized for the small detectors

Polarimetry at low energy

High-field Moller at 1.3%, Integrating Compton at 1.2%

New Integrating Detectors

Suitable energy resolution achieved for 1 GeV electrons. <5% precision loss.

Lead Target

Survival >25 C

Fast Helicity Flipping

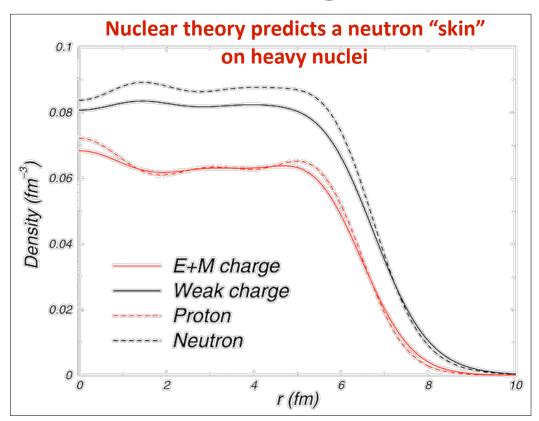
We know how to control false asymmetries and monitor performance

Injector Spin Manipulation

Second Wein and solenoid are calibrated and used for helicity reversal. Important cancellation for systematic beam asymmetries from the polarized source.

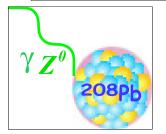
Beam Modulation System

Fast beam kicks cancel low frequency noise and improve precision of beam position corrections

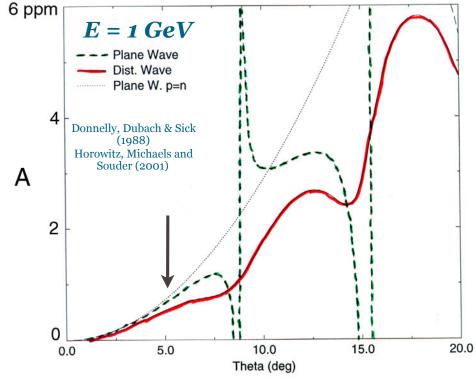

A_T false asymmetry

 A_T is small (<1 ppm Pb, <10 ppm C) and A_{false} will be small if P_T is minimized

In terms of statistical power and systematic control, PREX-I worked


PREX-I has >200 citations on inspirehep, strong support for PREX-II

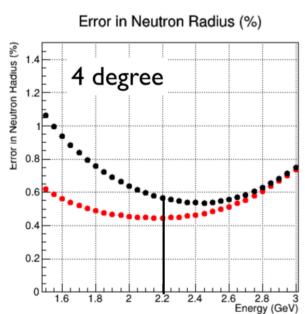
Weak Charge Distribution of Heavy Nuclei

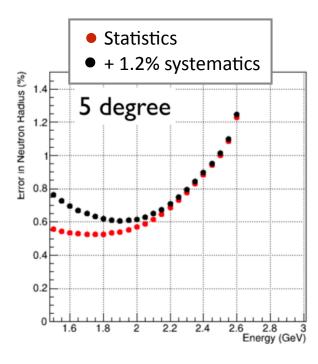

Really measuring how F _W is different than
F _{ch} . Sensitivity is found by approaching the
diffractive minimum for F _{ch} , but maintaining
enough rate for precise measure of Apv

	proton	neutron
Electric charge	1	0
Weak charge	~0.08	1

for spin-0 nucleus

$$A_{\rm PV} pprox rac{G_{
m F}Q^2}{4\pi\alpha\sqrt{2}} rac{F_{
m W}}{F_{
m ch}}$$

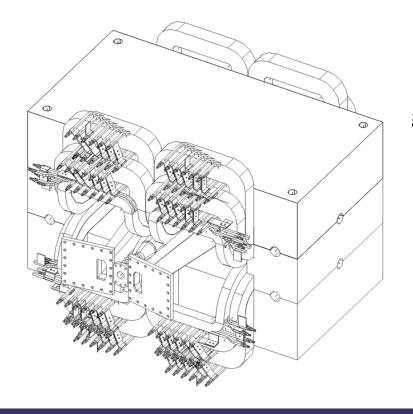

CREX at 5 degrees


CREX at 5° scattering angle maintains figure-of-merit

Precision on A_{PV} goes down, but sensitivity to R_n gets better

Many benefits:

- single production target location
- reduced bend in septum
- more statistics dominated
- E_{beam} <2.2 GeV
- Reduced radiation level



angle	energy	rate	A_{PV}	$\delta A/A$	$\delta R/R$
		[MHz]	[ppm]	(stat) [%]	(total) [%]
4°	$2.0~{ m GeV}$	440	1.86	1.3	0.64
4°	$2.1~{ m GeV}$	310	2.0	1.4	0.60
4 °	$2.2~{ m GeV}$	220	2.1	1.6	0.57
5°	$1.8~{ m GeV}$	130	2.16	2.0	0.62
5 °	$1.9~{ m GeV}$	79	2.28	2.4	0.61
5°	$2.0~{ m GeV}$	48	2.37	3.0	0.62
5°	$2.1~{ m GeV}$	28	2.44	3.8	0.65
5°	$2.2~{ m GeV}$	16	2.49	4.9	0.71

Septum

3 coils, shims (g2p configuration) will be used to comfortably achieve CREX requirement

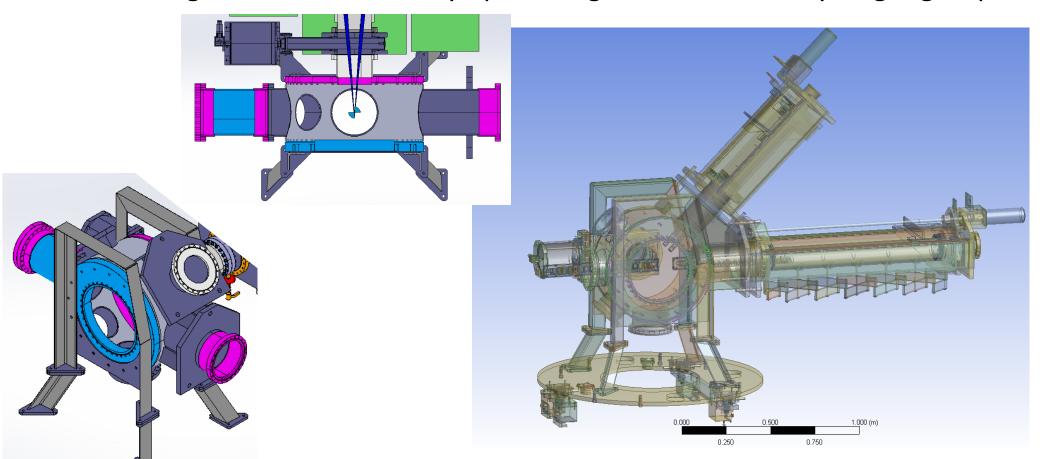
	PREX	CREX-5°	CREX-5°	g2p (May 17, '12)
Beam Energy [GeV]	1.068	1.9	2.2	3.0
Current	377	718	805	1050

PREX/ CREX: 7.5° bend angle, p₀=1.07 GeV, 2.2 GeV

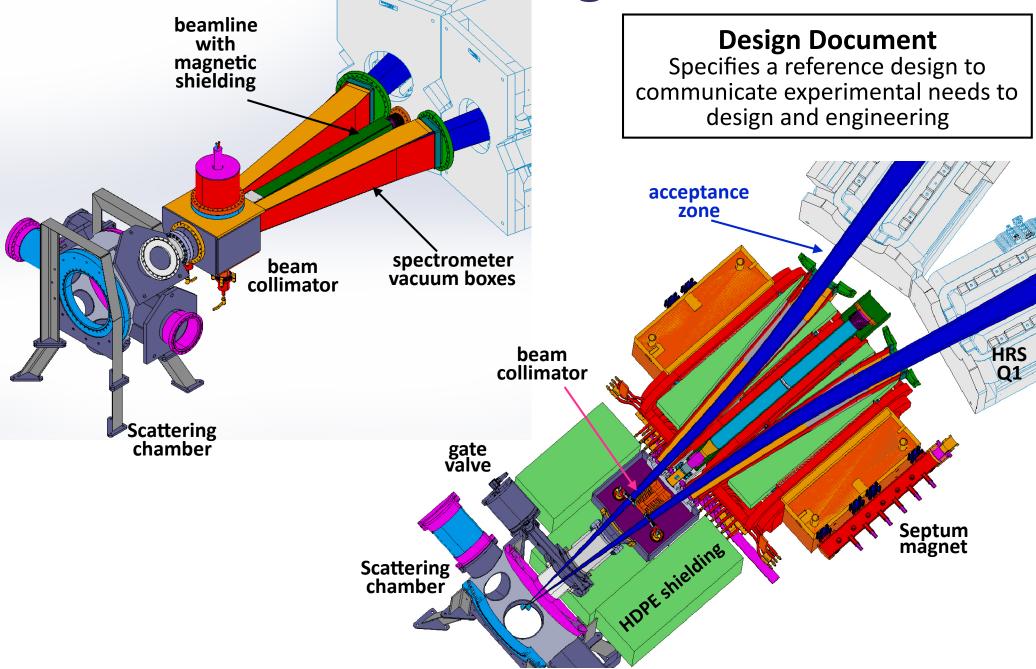
g2p: 6.8° bend angle, as high as $p_0=3$ GeV

Acceptance with shims already folded into FOM estimates

See talk by Juliette Mammei


Scattering Chamber Design

Design driven by Silviu Covrig Dusa

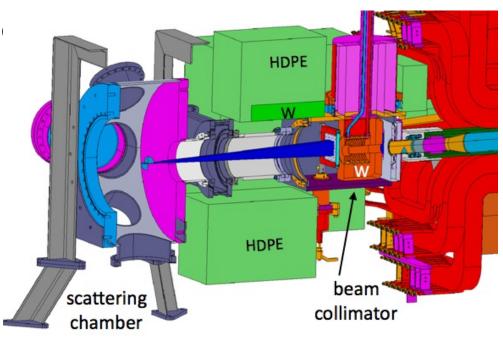

Long stroke for production target, separate warm arm for optics (watercell)

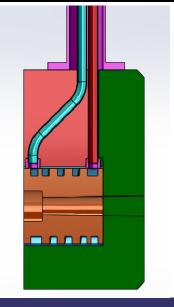
Design incorporates plans for alignment, installation, Ca target protection

Includes designs of movers and cryo plumbing, to be finalized by target group

Pivot Region

Radiation


PREX-I distributed significant power into the


- heavy target, low energy

Solution:

Localize power in hall at collimator, and shield it well

	PREX-I	PREX-II	CREX
Power in collimator (W/μA)	9.7	28.8	6.8
Power in hall (W/µA)	18.0	3.0	0.7

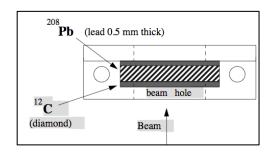
Total 1 MeV neutron-equivalent dose

HRS power supply platform	PREX II	CREX	PVDIS	PREX-I
electron	1.4E+10	1.5E+10	1.6E+10	1.0E+11
neutron	7.6E+09	2.1E+10	1.0E+10	1.2E+11
total	2.1E+10	3.6E+10	2.6E+10	2.3E+11

See later presentation on radiation

Other Aspects on the Path to High Precision

- Polarimetry
- high luminosity lead and calcium target
- beam
- optics calibration
- integrating detector
- planning and organization


Lead / Diamond Target

Lead has low melting point, and low thermal conductivity

Diamond foils have excellent thermal conductivity

12C is isoscalar, spin-0: benign background

Use synchronized raster to handle non-uniform lead thickness

Well tested! PREX-I with 3 targets measured average lifetime >27 C

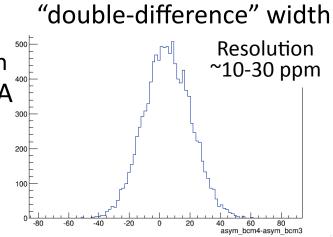
PREX-I suggests <6 targets are needed for full PREX-II luminosity, so I0 targets on ladder is a large margin of safety

Calcium Target

Thinner than proposal.

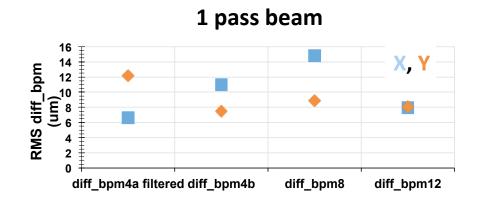
Tilt the foil to recover thickness

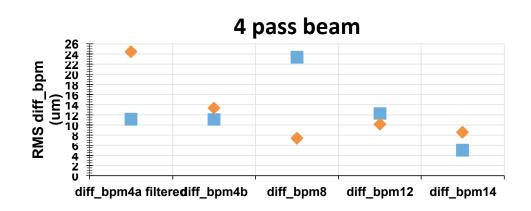
Oxidized surface


- Expected contaminants (O, N, C, H) are not dangerous background we don't need tight limit on surface layer
- Scraping surface should sufficiently eliminate contaminants

Beam

Recent test runs to check beam quality, monitor performance


BCM resolution exceeds PREX requirements


PREX-II statistical width ~ 120ppm @ 30Hz
BCM resolution of 40ppm would be 5% loss of resolution
1 MHz BCM electronics: ~25 ppm resolution @ 30 Hz, 20uA
Confirmed by excess noise with small-angle detectors
Similar to width measured in PREX-I

Charge and position jitter looks similar to 6 GeV era

 A_Q : 100-300 ppm RMS. Δx : 5-25 um RMS. (20 μA , 30 Hz, 2.2 GeV) Including "full gradient", 2.2 GeV at 1 pass

See talk by Yves Roblin

source optimization, slow reversals, matching, diagnostics, polarimetry

All requirements met before, machine capabilities remain as before

CEBAF Parity Violation Experiments

Experiment	Energy	Pol	1	Target	${ m A}_{ m PV}$ Expected	Charge Asym	Position Diff	Angle Diff	Size Diff $(\delta\sigma/\sigma)$
	(GeV)	(%)	(μA)		(ppb)	(ppb)	(nm)	(nrad)	~ ~ ~
HAPPEx-I (Achieved)	3.3	38.8	100	¹ H (15 cm)	15,050	200	12	3	
		68.8	40						
G0-Forward (Achieved)	3	73.7	40	¹ H (20 cm)	3,000-40,000	300±300	7±4	3±1	
HAPPEx-II (Achieved)	3	87.1	55	¹ H (20 cm)	1,580	400	2	0.2	
HAPPEx-III (Achieved)	3.484	89.4	100	¹ H (25 cm)	23,800	200±10	3	0.5±0.1	
PREx-I (Achieved)	1.056	89.2	70	²⁰⁸ Pb (0.5 mm)	657±60	85±1	4	1	
QWeak-I (Achieved)	1.155	89	180	¹ H (35 cm)	281±46	8±15	5±1	0.1±0.02	
QWeak (Analysis In Progress)	1.162	90	180	¹ H (35 cm)	234±5	<100±10	<2±1	<30±3	$<10^{-4}$
PREx-II (To Be Sched- uled, FY18?)	1	90	70	²⁰⁸ Pb (0.5mm)	500±15	<100±10	<1±1	<0.3±0.1	$<10^{-4}$
MØLLER (To Be Scheduled, FY21+?)	11	90	85	¹ H (150 cm)	35.6±0.74	<10±10	<0.5±0.5	<0.05±0.05	$<10^{-4}$

- PREx-II and its cousin, CREx, have requirements similar to QWeak-I. CEBAF can support these experiments without modification.
- Møller PQB requirements order of magnitude more stringent than previous parity experiments.

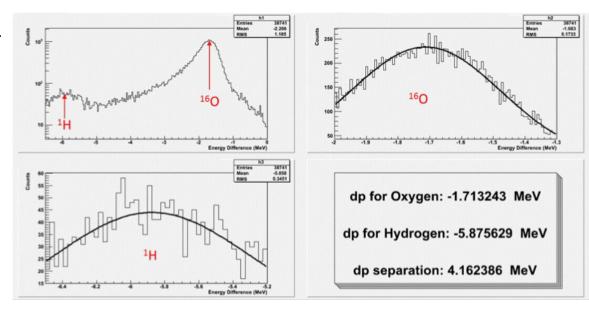
HRS and Kinematics Calibration

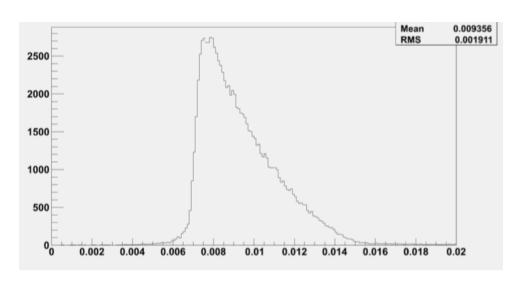
"New" HRS (SOS quad)

Acceptance limited by septum, not Q1

Tracking Analysis

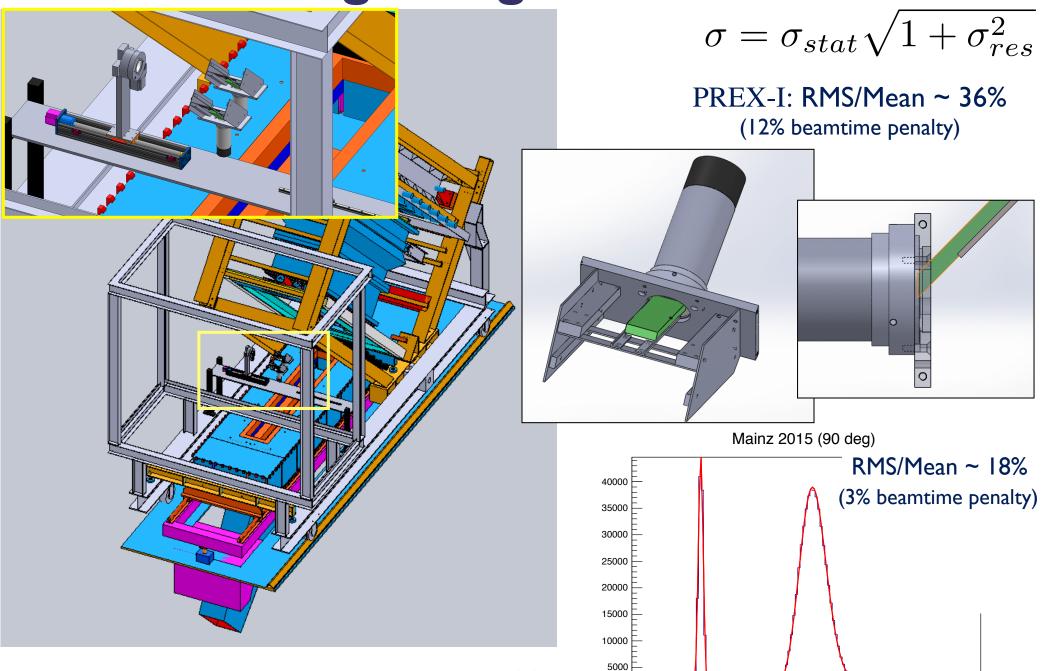
- Low current to keep rates low
- Tracking with standard VDC package
- Must verify no rate effects GEMs would remove this potential uncertainty


Pointing Calibration


Water Cell

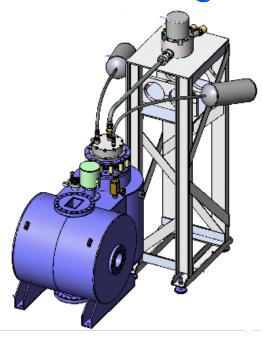
- H peak on O radiative tail
- separation gives precision angle determination (~0.5%)

Q² acceptance, distribution


- From production target
- multiple measurements over run
- uncertainty mostly from angle

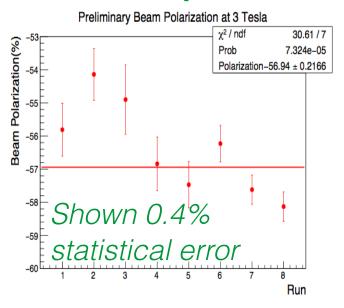
Known techniques. Requires watercell for each target position. GEMs will be installed to better control rate effects

Integrating Detectors


Concept ready. User design and assembly.

Polarimetry

On track for <1% in PREX-2 / CREX


Moller

Iron Foil Target

- Beam operations in Fall 2016
- Rigid target rotator
- Test stand studies in 2017
- Test Kerr monitor (MOLLER pre-R&D)
- Prepare for installation in 2018

2015/16 operation

Compton

- Green laser system: successful for PREX-I
- Recent operation ok, requires some maintenance.
- Improved laser polarization measurement (0.2%) will improve error bar for CREX, installation planned summer '16
- Chicane: successfully operated after upgrade

- Integrating photon analysis successful for PREX-I at ~0.5% precision
- GSO calorimeter, low energy photons for calibration
- highly linear base, diagnostics prepared at CMU
- Electron Detector: nice, but not required for CREX

Planning for commission and running

Planning has started for commissioning / running

As a start, we have the 2010 run plan:

https://prex.jlab.org/wiki/index.php/RunPlan

Critical systems have a defined chain of responsibility

System	JLab Staff Responsible	Collaboration Responsible
Target	Target Group	Silviu Covrig
Septum Magnet	Jack Segal	Juliette Mammei
Radiation Collimator	Robin Wines	Kent Paschke
Radiation Shielding	Robin Wines	Kent Paschke
Detectors	Jack Segal	Dustin McNulty
Data Acquisition	Robert Michaels	Raktiha Beminiwattha
Moller Polarimeter	Javier Gomez	Sasha Glamazdin, Jim Napolitano
Compton Polarimeter	Dave Gaskell	Gregg Franklin
Data Analysis	Robert Michaels	Kent Paschke, Seamus Riordan
Beamline	Doug Higinbotham	Krishna Kumar

Summary

Reference design is in place, and there has been progress towards a full design (scattering chamber, target ladders, vacuum, radiation shielding, collimators)

Techniques / devices are similar to PREX-I

(detectors, lead target, polarimetry, beam preparation and diagnostics, DAQ and analysis)

Collaboration support for all these components is in place

Next: Seamus, with a list of recommendations and specific responses