Radiological Issues at JLab

Lessons Learned from the PREX-I and Preparation for PREX-II/CREX (and MOLLER)

Rakitha S. Beminiwattha

Outline

- Radiation Sources in PREX-I
- Radiation Shielding Strategy for PREX/CREX and MOLLER
- Simulation benchmarks and comparison with measurements

PREX-I Radiation Issues

Target Area Close-View

Sources of Neutron Radiation

- Neutrons from the target are not the problem
 - 10% target rad. Length and elastic electrons from high Z target were a problem
- Neutron production via photo-production
 - GDR excitations in collimator and beam pipes
 - Results : soft neutron spectrum < 10 MeV

Sources of Neutron Radiation

Sources of Neutron Radiation

- Limiting Aperture : scattering angle above which beam interact with the beam-pipe
 - In PREX-I this was at the downstream of the septum beam pipe : 0.84 deg
 - PREX-I collimator aperture was 1.27 deg
- Electromagnetic radiation from Pb-target as a secondary source
 - Elastic electrons
 - Bremsstrahlung photons from 10% rad. length
- Combination of fringe field leak from the septum magnet and limiting aperture at septum area resulted in significant spray in to the hall and beam-pipe

Main Strategy

- Use a single collimator to stop everything that misses the dump
 - Minimum aperture at the collimator
- More neutron production at the collimator is expected
- Shield around that collimator
 - The energy spectrum is soft enough to shield effectively
- This is the strategy implemented for PREX and proposed MOLLER experiment

Neutrons and Damage to Electronics

1 MeV neutron-equivalent (NIEL) metric

1 MeV Equivalent Neutron Fluence

The silicon radiation damage by "1 MeV equivalent neutron fluence"

$$\Phi_{\rm eq}^{1\,{\rm MeV}} = \int_{0}^{\infty} \frac{{\rm D(E)}}{95\,{\rm MeV\,mb}} \phi({\rm E}) {\rm dE}$$

which produces the same damage as an arbitrary radiation field with a spectral distribution $\varphi(E)$

Radiation Dose Limit to Electronics

Commercial off-the-shelf (COTS) electronics are typically robust up to neutron doses of about $10^{13} n/cm^2$.

Optocouplers are significantly softer, with failure at 1×10^{11} 1-MeV n_{eq}/cm^2

Radiation Effects on Electronics

			relevant physical quantity the effect is scaling with
Single Event effects	Single Event Upset (SEU)	Memory bit flip (soft error) Temporary functional failure	High energy hadron fluence (cm ⁻²) (but also thermal neutrons!)
(Random in time)	Single Event Latchup (SEL)	Abnormal high current state Permanent/destructive if not protected	High energy hadron fluence (cm ⁻²)
Cumulative effects	Total lonizing Dose (TID)	Charge build-up in oxide Threshold shift & increased leakage current Ultimately destructive	lonizing dose [Gy]
(Long term)	Displacement damage	Atomic displacements Degradation over time Ultimately destructive	Silicon 1 MeV-equivalent neutron fluence [cm ⁻²] {NIEL -> DPA}
	2012 May 4	F. Cerutti	JLAB seminar 22

PREX Shielding Strategy

	Inner radius (cm)	Distance from Target	angle
collimator	1.17	101.5	0.78 °
septum pipe	4.13	266	0.86°
gate valve	5.08	337	0.84°
End beam line (hall end)	45.7	2757	0.95°
(beam dump)	45.7	3312	0.79°

- Collimator aperture at 0.78° so whatever gets past the plug reaches the dump
- 20-30 cm thick highdensity polyethylene (HDPE) shield to moderate neutrons

Maximize **solid angle** coverage of shield around collimator

PREX-II Collimator

- Collimator front face 85cm from target
- Intercepts electrons >0.78°
- Power deposited: 2.1kW at 70 uA
- Inner cylinder 30% Cu-70% W alloy
 - Water-cooled with brazed cu sleeve
 - Initial estimates show cooling is sufficient
- Outer cylinder is tungsten
- Designed to slow down and selfshield neutrons
- PREX-I collimater only intercepted 1.27° and deposited 500 W

PREX-II Collimator

- Collimator will be activated by power deposited in the collimator bore
- Retract collimator into housing to shield the bore during deinstallation

Neutron Shielding Design

- Collimator isolated as the main source of neutron in the experiment
- Mostly soft neutrons (< 10 MeV) escape to the hall
- The collimator region is shielded using high density polyethylene (HDPE)

Neutron Shielding Design

Septum Fringe Magnetic Field

This is a simple model for fringe magnetic field inside the septum beam pipe using a Tosca model

Reducing PREX-I Radiation Sources

- Large aperture collimator in PREX-I + fringe magnetic field have produced many secondary radiation sources
- Small aperture collimator + small fringe field in PREX-II design have reduced radiation sources in the hall

Origin of photons

Extend magnetic shield through septum magnet

 10^{-4}

10-5

10-6

10-7

Reducing PREX-I Radiation Sources

- Large aperture collimator in PREX-I + fringe magnetic field have produce many secondary radiation sources
- Small aperture collimator + small fringe field in PREX-II design have reduced radiation sources in the hall
- PREX-II collimator absorbs more power and dissipate less power back to the hall

	PREX-I	PREX-II	CREX
EM Power in collimator (W/µA)	9.7	28.8	9.0
EM Power dissipated to the hall (W/µA)	18.0	3.0	1.5

Simulations done with different experimental configurations to benchmark simulation results between experiments

	PREX-II	CREX	PREX-I	HAPPEX-II	PV-DIS
Target	lead (0.6g/cm²)	Ca (1 g/cm ²)	lead (0.6g/cm²)	20cm LH ₂	20cm LD ₂
Beam E	1 GeV	2.2 GeV	1 GeV	3 GeV	6 GeV
Septum	shielded fringe	shielded fringe, TOSCA model	full fringe	full fringe, scale=3	no septum, no fringe
collimator	PREX-II	PREX-II	PREX-I	PREX-I	none
target position	z=-1m	z=-1.4m	z=-1m	z=-1m	z=0
Shielding	shielded	shielded	none	none	none (no septum)
Current	70 μΑ	150 μΑ	70 μΑ	55 μΑ	100 µA
Beam Charge	170 C	470 C	82 C	87 C	150 C

<u>Total power of >10 MeV electrons around the hall shows</u> <u>improvement with collimation and shielding</u>

Hall Detector	P2/P1	P2 / H2	P2 / PVDIS	CREX/P1
electrons (W) E>10 MeV	4%	39%	15%	5%

Radiation at the HRS Power Supply Platform

particle	E Range (MeV)	P2 / P1	P2 / H2	P2 / PVDIS	CREX/P1
neutron	0 < E < 0.1	44%	410%	270%	38%
neutron	E>0.1	6%	76%	63%	8%

Additional optimization of HDPE shielding may further improve neutron

particle	E Range (MeV)	P2/P1	P2 / H2	P2 / PVDIS	CREX/P1
electron	0 < E < 0.1	4%	42%	21%	4%
electron	E>0.1	6%	63%	65%	5%

Radiation at the Q1 / Above Septum

particle	E Range (MeV)	P2 / P1	P2 / H2	CREX/P1
neutron	0 < E < 0.1	133%	1100%	120%
neutron	E>0.1	20%	170%	20%

Additional optimization of HDPE shielding may further improve neutron

particle	E Range (MeV)	P2 / P1	P2 / H2	CREX/P1
electron	0 < E < 0.1	8%	100%	7%
electron	E>0.1	6%	90%	5%

The silicon radiation damage by "1 MeV equivalent neutron fluence"

$$\Phi_{\rm eq}^{1\,{\rm MeV}} = \int_{0}^{\infty} \frac{D(E)}{95\,{\rm MeV\,mb}} \phi(E) dE$$

which produces the same damage as an arbitrary radiation field with a spectral distribution $\varphi(E)$

<u>1MeV neutron Equivalent (1MeV neq /cm2)</u> <u>Near HRS Platform</u>

NIEL thresholds: Semiconductor damage ~10¹³, Optocoupler damage ~10¹¹

HRS power	PREX-II	PREX-I	CREX	P2/P1	P2/H2	CREX/P1
detector						
neutron	7.6E+09	1.0E+11	2.4E+10	7%	70%	23%
electron	1.4E+10	1.2E+11	1.4E+10	11%	94%	12%
total	2.1E+10	2.3E+11	3.8E+10	9%	83%	17%

- PREX-I integrated dose estimate
 - did not reach semiconductor damage threshold.
 - exceeded optocoupler damage threshold
- PREX-II integrated dose will be down an order of magnitude from PREX-I
- CREX integrated dose will be about 1/4 of PREX-I

<u>1MeV neutron Equivalent (1MeV neq / cm2)</u> <u>Near collimator flux will exceed optocoupler damage</u> <u>threshold</u>

Q1/cryo det	PREX-II	PREX-I	CREX	P2/P1	P2/H2	CREX/P1
	(1MeV neq / cm2)					
neutron	3.9E+11	1.1E+12	5.4E+11	35%	200%	50%
electron	1.7E+11	1.4E+12	1.9E+11	13%	140%	14%
total	5.6E+11	2.5E+12	7.4E+11	23%	180%	30%

Neutron Flux at Different Locations

HRS Side	PREX-II	CREX
neutron	1.9E+09	7.6E+09
electron	3.4E+09	4.3E+09
total	5.3E+09	1.2E+10

Upstream PS	PREX-II	CREX
neutron	3.2E+09	4.4E+09
electron	1.8E+06	2.6E+07
total	3.2E+09	4.4E+09

~4x less than HRS Platform

HRS Under	PREX-II	CREX
neutron	1.6E+10	1.7E+10
electron	1.4E+10	2.0E+10
total	2.9E+10	2.7E+10

similar to HRS Platform if no local shielding

~10x less than HRS Platform

Radiation Effects on Electronics

			relevant physical quantity the effect is scaling with
Single Event effects	Single Event Upset (SEU)	Memory bit flip (soft error) Temporary functional failure	High energy hadron fluence (cm ⁻²) (but also thermal neutrons!)
(Random in time)	Single Event Latchup (SEL)	Abnormal high current state Permanent/destructive if not protected	High energy hadron fluence [cm ⁻²]
Cumulative effects	Total lonizing Dose (TID)	Charge build-up in oxide Threshold shift & increased leakage current Ultimately destructive	lonizing dose [Gy]
(Long term)	Displacement damage	Atomic displacements Degradation over time Ultimately destructive	Silicon 1 MeV-equivalent neutron fluence [cm ⁻²] {NIEL -> DPA}

High Energy Neutrons

- Source of SEU or SEL events (instantaneous effects)
- Reduced high energy neutrons in the hall enclosure
 - Due to new collimator with self-shielding
 - Reductions are not large as low energy neutrons

Hall Detector	PREX-1	PREX-2	CREX
(n,E>10MeV) MHz/m ²			
HRS Platform	8	<1	<2.3
At Q1 / Above Septum	320	51	78

High Energy Neutrons

Hall Top Detector	PREX-1	PREX-2	CREX
Integrated Flux (n>30MeV) [#/m²]	4.5E+12	5.8E+12	1.5E+13
Integrated Energy (n>30MeV) [J/m²]	72	87	290

- High energy neutrons reaching the top of the hall enclosure
 - The integrated does for PREX-II is higher due assumed efficiency and longer running time compared to PREX-I
 - CREX is very high due to larger luminosity combined with high Z target
- Main influencer for site boundary

Site Boundary

RBM-3

- Site-boundary mostly influenced by upward going, high-energy neutrons
 - They can penetrate the overburden and shower onto the site boundary
- Neutron rich nuclei (Pb or Ca) are a main source
- Jlab limit : 10 mrem/yr

Neutrons and EM penetration through Hall dome

De-installation Plans

- Material activation studies via FLUKA simulation is an important aspect of deinstallation plans
 - Work in progress by Lorenzo Zana aims to reduce de-installation dose and design optimal plans

Activation in mrem/h after 1 day

Simulation Benchmarks

G4 and MCNPX comparison for neutron production by 1 GeV electrons

Simulation Benchmarks

G4, G3 and FLUKA comparison for neutron production by 1 GeV electrons on Pb target + collimator

Agreement within factor of 2

Simulation vs. Measurement

RadCon neutron dose rate measurements (units of Biological Damage (rem)) in the Hall A during PREX-I are compared with Geant4 simulation. Study by Maduka Kaluarachchi (UVA)

Consensus is we have a factor of 2 safety margin between simulation and measurements. Different simulations agree within factor of 2

Collimation and Radiation Shielding for MOLLER

- Single collimator to intercept low angle scattered beam
 - <u>To isolate neutron production</u>
- Target shielding required a lead wall
 - To stop EM power from the target
- Concrete and Tungsten for high energy neutrons
- Polythene for low energy neutrons (< 10 MeV)
- Goal of the shielding is to reduce the EM and neutron radiation into the hall A and reduce background at the detector region

Collimation and Radiation Shielding for MOLLER

Summary

- Combination of large aperture collimator and septum fringe created many neutrons sources in the hall during PREX-I
- Isolating the main neutron source and shielding adequately is the optimum solution to minimizing the neutron radiation
 - Self-shielding collimators, concrete and HDPE
 - MOLLER design already successful at reaching the radiation goal using this strategy
- G4 simulations have shown collimation and shielding strategy reduces the expected radiation load in PREX-II to the level of previous successful experiments such as HAPPEX-2 or PVDIS in the most sensitive region of the hall

Supplementary

Simulation Geometry

- Target
- Detailed collimator
- Detailed beam-line (but not support or flanges)
- septum yoke
- HRS dipole
- detailed pivot support structure
- HDPE shielding
- concrete walls, floor, dump tunnel and vault

Simulation Geometry

Cylindrical detector at the edge of the hall enclosure measures radiation for he hall

Neutrons Characteristics

Neutron Stopping Power of HDPE

PREX Radiation Issues

