Compton Polarimetry: Photon Analysis

Megan Friend

CMU

February 20, 2010

Megan Friend (CMU)

Compton Polarimetry: Photon Analysis

→ ▲ ≧ ▶ ▲ ≧ ▶ ↓
February 20, 2010

3

1 / 13

OUTLINE

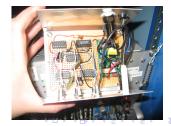
1 Photon Detector

2 FADC DAQ

3 Calculating Beam Polarizations

- Theoretical Asymmetries
- Experimental Asymmetries
- Beam Polarizations

4 Preparation for PREX

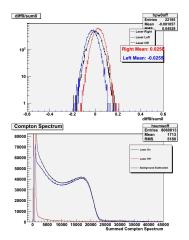

5 CONCLUSION

글 노 네 글

PHOTON DETECTOR

- 15cm long, 6cm diameter GSO crystal
- "Linear" tube and base
 - Specially designed LED pulser for linearity testing
- Adjustable collimator
- Synchrotron radiation filters of different thicknesses
- 1mm thick W converters and light-guide "fingers" to determine horizontal and vertical beam position

Megan Friend (CMU)


Compton Polarimetry: Photon Analysis

February 20, 2010 3 / 13

FADC DAQ

FADC DAQ

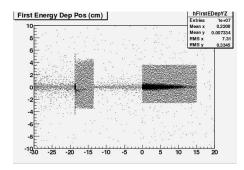
- Two simultaneous modes
 - Accumulator mode
 - Integrates all pulses over MPS
 - No dead time
 - Triggered mode
 - Look at pulse structure and Compton spectrum
- Can also run with FADC and EDET simultaneously (CompSimple)

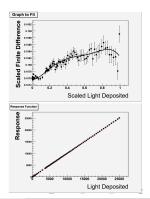
3

CALCULATING A POLARIZATION

The beam polarization is:

$$P_{elect} = rac{A_{exp}}{P_{phot} * A_{th}}$$

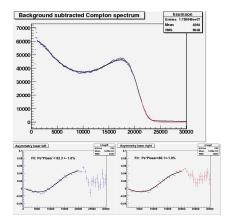

The experimental asymmetry is:


$$A_{exp} = \frac{S_n^+ - S_n^-}{S_n^+ + S_n^-}$$

Where S_n^+ (S_n^-) is just the FADC accumulator signal for a positive (negative) helicity MPS

THEORETICAL ASYMMETRY

- Calculated using Geant 4 simulation (Gregg Franklin)
 - Generate Compton photons
 - Let them interact with lead filter/collimator/GSO
 - 5% smearing factor
 - Include PMT nonlinearity



Compton Polarimetry: Photon Analysis

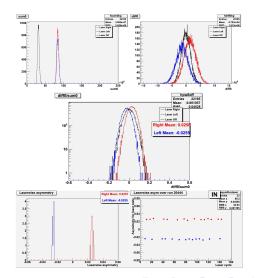
THEORETICAL ASYMMETRY, CONT.

- Fit simulation to triggered data
- Get triggered data asymmetry (independent measurement of A_{th})
 - Gives $P_{elect} = 83.8 \pm 1\% \text{ for}$ laser left and $80.1 \pm 1\%$ for laser right
- Calculate energy weighted asymmetry (A_{th}) – used to calculate final beam polarization

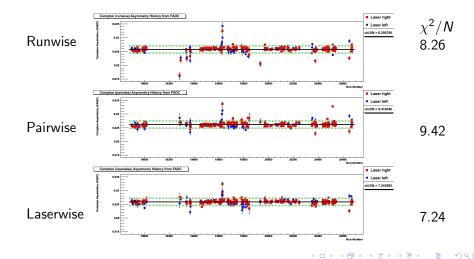
(4) ∃ ≥ (4) ∃ ≥ (4)

EXPERIMENTAL ASYMMETRIES

Runwise

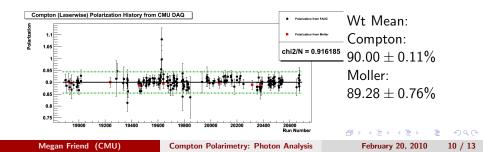

Over the entire run

Pairwise

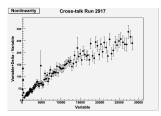

- Pair by pair
- Locally stable

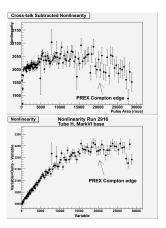
Laserwise

- For each laser cycle
- Local background subtraction


STABILITY OF EXPERIMENTAL ASYMMETRIES DURING HAPPEX-III

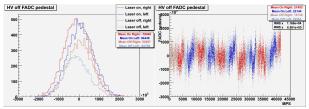
HAPPEX-III BEAM POLARIZATIONS


Preliminary HAPPEX-III results


- Calculated using laserwise asymmetries
- Geant 4 simulation data
 - Includes collimator/filter, PMT nonlinearity, photon beam offset
- Does not include
 - Run-by-run laser polarization
 - Laser transfer function

PREX PMT SELECTION

- Linear tube and base selected
- Currently there are cross-talk issues with the LED pulser



(人間) くちり くちり

3

ISSUES

- DAQ needs to work at 240Hz (not tested yet) shouldn't be difficult
- Pedestal problem? needs more testing

- Ratty (helicity-dependent) MPS signal maybe doesn't matter
 0 -1 1 1 0 -1 1 0 0 1 0 -1 1 1 0 0
- Beamline kinks/photon beam position
- BCM asymmetries are NOT a problem for the FADC DAQ

CONCLUSION

- HAPPEX-III analysis is progressing well
 - Preliminary laserwise analysis gives a beam polarization with a weighted mean of 90.00 \pm 0.11% with $\chi^2/N=.92!$
 - In good agreement with Moller measurements
 - Triggered data results do not match accumulator results yet it's a work in progress
- Things are looking fine for PREX, although we still need to:
 - Test FADC DAQ at 240Hz
 - Look into laserstate dependant pedestal shifts
 - Fix photon beamline
 - Fix LED pulser
 - Minor DAQ tweaks

13 / 13