
Hall A Controls

Hardware Con�guration for EPICS

J. Gomez

Je�erson National Accelerator Facility

May 2, 1999

JLAB-TN-99-014

Abstract

We describe the implementation of position independent and local (shareable) device handlers
in the Experimental Physics and Industrial Control System (EPICS). The objectives were to make
the EPICS device handlers used by Hall A portable and reusable so that developer e�ort could be
minimized. Four years of operations have totally con�rmed our expectations.

1 Introduction

The Experimental Physics and Industrial Control System (EPICS)[1] consists of a set of software com-
ponents and tools that allow to create a distributed control system. The basic components of the system
are:

� Operator Interfaces (OPI). These are UNIX based workstations able to run various EPICS tools
like MEDM for display and control.

� Input Output Controllers (IOC). These are VME/VXI based crates containing a single board com-
puter with the real-time operating system VxWorks, various I/O modules as well as interfaces to
other I/O busses like serial or GPIB.

� Local Area Network (LAN). This is the communication path between the IOCs and the OPIs as
well as among the IOCs.

Signal monitoring and control is performed by the IOCs. At the hart of an IOC is a memory resident
database describing each of the signals to be monitored and controlled by the IOC. Each database entry
(record) corresponds to a signal. When a given record executes, it must access the appropriate module to
retrieve/update the signal value. It does so through a device handler routine. But, for the handler to be
able to access the hardware, it must know how has the hardware been con�gured (i.e. assigned addresses
and interrupts as well as any interface that it must go through to access the module). Incorporating
the hardware con�guration information of an IOC into the device handlers is, at present, an unsolved

problem for EPICS.[2]

In the case of EPICS 3.12 and previous versions, the suggested procedure is to reserve the required
hardware resources (i.e. address space and interrupts) in the EPICS �le module types.h. The information

1

in this �le is then compiled into the various device handler binaries (i.e. allocation of hardware resources
is static or hard-coded). The procedure is, however, not practical because: (a) the development of
device handlers must be coordinated among all EPICS developers, regardless of development site, to
avoid conicts in address space and/or interrupt allocation, (b) the structure of module types.h allows
only for very limited con�guration information and, (c) older and rarely used devices continue taking
precious hardware resources from newer and more commonly used devices. For these reasons, developers
are advised in the latest EPICS release (3.13) not to use module types.h when developing new device
handlers although no alternative is available or proposed. In reality, module types.h had fallen in disuse
long before the release of EPICS 3.13 and the scheme used for handler allocation of hardware resources
is very site (and even project) speci�c.

Regardless of the EPICS version, two issues make EPICS device handlers non-portable and non-
reusable:

� Static allocation of hardware resources.

� Monolithic handlers. The device handler code for a particular device, like one of the HP3458A
Digital Multimeters of Fig. 1, also contains code to handle all intermediate modules and interfaces
required to access the particular device (i.e. the IP488, VIPC610 and VMECHIP2 of Fig.1).

Due to the above two issues, porting of EPICS device handlers is a time consuming and expensive
proposition. Developer time is required to change the static hardware resource allocation of a handler
every time a hardware conict is detected. Use of a monolithic device handler in an IOC requires to
either replicate all intermediate hardware implicit in the handler or to rewrite the code. Furthermore,
static monolithic device handlers are ine�cient in terms of IOC memory use, developer e�ort as well
as expandability. Memory use and developer e�ort because code to handle intermediate interfaces gets
repeated in similar handlers. Expandability because a developer either over-allocates hardware resources
assuming that there will be more devices in the future or modi�es the code to re-allocate resources
when the new devices are added. Finally, the developer has to face the dilemma of either imposing the
use of homogenous hardware so that device handlers do not need to be modi�ed or manage an EPICS
distribution with multiple source copies of a given handler code each corresponding to di�erent IOC
hardware con�gurations. EPICS device handler portability and reuse can be obtained and all the above
problems eliminated if the handler code is position independent and local instead of static and monolithic.
These concepts are discussed below.

1.1 Position Independent Device Handlers

Position independent device handlers contain no absolute hardware addresses or interrupt vector numbers.
Hardware addressing within the handler is relative to a set of device access registers which are loaded
with the actual addresses occupied by the device at either IOC initialization time or the �rst time the
handler is requested to execute.

The process of allocating hardware resources should be as automatic (no developer intervention) as
possible within the bounds allowed by the hardware. As way of examples, a device handler needing an
interrupt vector should contain the means to retrieve the next available interrupt vector, assign it and
increment the interrupt vector counter. Other hardware resources, like VME or GPIB addresses, do not
lend themselves to automatic con�guration. The hardware address of VME and GPIB modules must
be assigned before accessing the modules for the �rst time. In these cases, the device handler could
retrieve the information at initialization time from an ASCII based IOC speci�c con�guration �le. Such

2

scheme provides for a exible IOC con�guration; After selecting an IOC to install the device, the ASCII
con�guration �le for that particular IOC would need to be updated only if there are hardware resources
that need to be con�gured manually (i.e. VME addresses). It is easy to check for hardware conicts
because all manually con�gured hardware resources for the chosen IOC are declared in this ASCII �le.
The IOC con�guration ASCII �le does not add complexity to the task of IOC management since already
every EPICS IOC requires to load a separate database �le(s). Furthermore, if several IOCs have the
same hardware con�guration, a single ASCII con�guration �le could be used for all of them.

The main bene�ts brought by position independent device handlers are:

� Device handler development and use is independent of speci�c IOC con�guration, project or orga-
nization. There is no longer any need to impose a homogenous hardware nor to manage multiple
copies of the same device handler each with di�erent allocation of hardware resources.

� Device handlers can be made re-entrant. A re-entrant device handler is independent of the number
of devices being managed simultaneously while at the same time it minimizes the use of IOC
memory. The developer no longer needs to know how many instances of the same device are going
to be managed simultaneously.

1.2 Local Device Handlers

A local device handler can only contain code to handle the particular device for which it was developed.
Imposing this requirement in our monolithic HP3458A DMM example of Fig. 1 leads to four device
handlers; one for each device and interface (HP3458A, IP488, VIPC610 and VMECHIP2). The main
bene�ts are:

� Instead of a monolithic code which can not be re-used unless either the whole hardware con�guration
is replicated or the handler modi�ed, we are left with a set of brick like modules (like the popular
LEGO) which we can re-use to handle an in�nite number of device con�gurations. As way of
example, another HP3458A DMM could be added to the left side of Fig. 1, by putting together
the IPIC, IP488 and HP3458A device handlers.

� Minimizes developer time (cost) since the developer has now only to concentrate on those devices
for which there are no handlers available for re-use.

1.3 Shareable Device Handler Infrastructure

The requirements of position independence and locality that we have imposed on the EPICS device
handlers are similar to the requirements that must be met by, in the jargon of computer systems, shareable
object code. For that reason, position independent and local device handlers will be referred to as
shareable device handlers from now on.

Similar to the case encountered in a computer system when using shareable object code, an infras-
tructure is required to load and link shareable handlers. This infrastructure consists of a link table and a
loader/linker. The link table stores the entry point(s) of the various handlers (their memory location) as
well as relations among handlers. The loader/linker function is to bring the various handlers into memory
and to �ll the link table with the necessary information to access and execute the handlers.

The link table organization is critical since it a�ects the operation e�ciency of both the device handlers
as well as the loader/linker. We expect an e�cient link table if the chosen link table organization captures

3

the essential points of IOC hardware representation and device handler execution. These points are
discussed in Section 2. Section 3 presents the actual link table software implementation used by the Hall
A controls version of EPICS.

2 Link Table Representation

Let us return to the example hardware con�guration shown in Fig.1 for a MVME162 single board com-
puter. The IOC hardware architecture can be viewed as a tree:

� The root of the tree represents the CPU chip itself.

� The main trunk represents the CPU bus to main memory.

� The tree branches represent secondary buses which take-o� from either the CPU bus (i.e. the VME
bus of a single board computer like the MVME162) or from other secondary buses (i.e. a VME
based serial interface like the VMIC6016 of Fig. 1).

� The tree leaves represent the end-devices which hang from the various buses (i.e. the DF853 power
supply and the HP3458A digital multimeters of Fig. 1).

Traveling in the imaginary world of this tree, from the root (CPU) to the tree leaves (end-devices), one
encounters points at which one or more branches take-o� from either the main tree trunk or the branch
that we are following. These points are tree nodes representing hardware interfaces between buses. An
example of a tree node would be the VMIC6016 of Fig. 1. It acts as a tree node between 16 serial buses
and the VME bus on which the card sits. Consider now all the branches which meet at a given tree
node. The branch with the least number of tree nodes between it and the root will be referred to as the
primary branch of the node. All other are secondary branches for that particular node. In the case of
the VMIC6016 of Fig. 1, the primary branch is the VME bus and the secondary branches are each of
the serial lines. The ports of a tree node device are also classi�ed into primary and secondary according
to the type of branch to which they connect. Returning to our VMIC6016 example, the VME interface
of this device is the primary port and each of the serial ports are secondary ports.

End-devices (tree leaves) have one port only. The port is classi�ed as a primary port because tree
leaves can be viewed as a special case of a tree node with no secondary branches coming o� it. The
end-devices represent the boundary between the internal IOC architecture and the outside world signals
that we want to monitor and/or control and which are represented by the EPICS database records

As discussed above then, the hardware con�guration of an IOC can be viewed as a directed hardware
tree. The tree is directed because at every junction we have de�ned a primary branch which is closer to
the root than any other branch at the particular junction we are considering. We need now to consider
how this idealized tree representation of an IOC hardware is transverse (traveled) when the various device
handlers execute. This is discussed next.

Consider, for example, what happens when one of the HP3458A DMM of Fig. 1 is commanded to take
a new measurement. The operation begins when an EPICS database record triggers the HP3458A handler
to take a measurement. The HP3458A handler determines from the IOC hardware tree representation that
this device is not directly connected to the CPU bus but to an IP488 interface. Since only those hardware
devices residing on the CPU bus can be directly accessed by their handlers (i.e software routines executing
at the CPU/memory level), the HP3458A handler directs all its operation requests to the IP488 handler.
The process is repeated by the IP488 and VIPC610 handlers until it reaches the VMECHIP2 handler.

4

The VMECHIP2 handler determines from the IOC hardware tree representation that the VMECHIP2
hardware interface is located directly on the CPU bus and, consequently, can be accessed by the CPU. The
VMECHI2 handler performs then the requested operation on the VMECHIP2 hardware and the results
propagate down through the hardware chain. Two conclusions can be extracted from this example then:

� The device handler link table itself can not be implemented as a tree. A tree has a single entry
point (the root) which will force us to scan (transverse) the tree every time a handler needs to
execute. Such operations will be extremely ine�cient. An array based link table is better suited to
our needs since given an index into the array, we could immediately retrieve the necessary handler.

� Every entry of the array based link table must be able to implement a backward transversal node
of the IOC hardware tree (i.e. from the leaves to the root).

In our previous example, we assumed that handlers could easily communicate between them. Such
communication, however, requires a well de�ned application programming interface (API). To implement
the API we note that, regardless of the internal workings of a given device, interaction with the device
is totally determined by its hardware interface (or, in general, bus type). For example, access to any
VME device requires an address value and modi�er, the word length (i.e. 8, 16 or 32 bits), the type
of operation (i.e. read or write) and a data bu�er where the data read is to be stored or the data to
be written is located. So, several APIs need to be de�ned, one for each bus type (i.e VME, GPIB and
so on). A given device handler will implement the necessary API for each of its hardware interfaces.
As an example, the HP3458A handler will implement the GPIB API only while the IP488 handler will
implement both Industry Pack and GPIB APIs.

Handler communication not only requires well de�ned APIs (discussed above) but also a well de�ned
protocol regarding the use of those APIs. This protocol can be deduced from the example process outlined
above to take a new measurement with an HP3458A DMM:

� device handlers behave as clients only through their primary port; they make service requests and
wait for the responses.

� device handlers behave as servers through each of their secondary ports; they wait for the arrival
of a service request and return a response.

Busses not only represent natural boundaries to de�ne the handlers APIs but also the device handler
link table indexing. Note that, all devices located in a given bus must have a common API and depend
from the same interface (server). The two HP3458A DMM of Fig. 1, for example, depend from the same
IP488 interface. This suggests that each link table array entry should correspond to a bus since this will
minimize the amount of memory used by the link table as well as the time necessary to access the server
handler for backward transversal of the IOC hardware tree.

We have presented in this section the basic ideas guiding and choices made while implementing the
device handler link table used by the Hall A controls version of EPICS to manage shareable device
handlers. The actual software implementation is presented in the next section.

3 Link Table Implementation

The actual link table implementation can be found in the �le $EPICS/base/include/Hac Cfg.h where
$EPICS represents the EPICS distribution home directory. In this section, we present an overview of the
main implementation details.

5

The �rst thing needed is to be able to uniquely identify any device within the hardware tree of an
IOC. While there are many ways to accomplish this, we choose to use three tags (positive numbers used):

� BusId: a unique but otherwise arbitrary number assigned to each tree branch (bus) of an IOC
hardware con�guration tree.

� DevId: a numeric code which allows to recognize the device type within a given bus type. This tag
is bus dependent to facilitate detection of improper device con�guration information (i.e. a GPIB
based device like the HP3458A DMM can not be connected directly to a VME bus).

� LU: an instance number used to di�erentiate identical devices located on the same bus (i.e. same
BusId).

The device handler link table consist of a global array of pointers to C structures of type Hac Bus:

struct Hac_Bus *Hac_BusPtr[Hac_MxBusId + 1];

where the parameter Hac MxBusId represents the largest BusId number that can be assigned to any bus
(100 at present). Note that the link table is indexed by the BusId tag.

The structure Hac Bus is de�ned as:

struct Hac_Bus

{

unsigned short BusType;

unsigned short depBusId;

unsigned short depDevId;

unsigned short depLU;

unsigned short depPort;

union Hac_Vias Bus;

};

The �eld BusType holds a code a which uniquely identi�es the type of bus. The actual codes are de�ned
in the Hac Cfg.h �le. At present they are:

#define HacBTyp_CPU 0

#define HacBTyp_VME 1

#define HacBTyp_RsNA 2

#define HacBTyp_RsA 3

#define HacBTyp_IPACK 4

#define HacBTyp_GPIB 5

A HacBTyp CPU bus represents the CPU chip to main memory connection of an IOC (the main trunk
of our idealized hardware tree). There is always one and only one CPU bus per IOC. BusId = 0 has
been reserved for this bus type. For all other bus types, there could be none, one or multiple instances
in a given IOC con�guration. A HacBTyp RsNA bus is a serial non-addressable bus (i.e. only one device
per bus) like the RS232C standard. A multi-drop (i.e. addressable) RS485 bus represents an example
of a HacBTyp RsA bus. HacBTyp IPACK stands for the well known Industry Pack bus introduced
by GreenSprings. The HacBTyp VME and HacBTyp GPIB entries represent VME and GPIB busses
respectively. The BusType �eld is used, for example, by the handlers of devices which can be setup to

6

communicate trough RS232C or GPIB to determine which API they must use. Another example are
devices which can be setup to communicate through a non-addressable (i.e. RS232C) or addressable (i.e.
RS485) serial interface.

The �elds depBusId, depDevId, depLU and depPort hold the tags which allow to uniquely identify the
point of origin of the bus in which we are. The �rst three �elds hold the BusId, DevId and LU of the
device from which the bus originates. The �eld depPort holds the Port number within the device. These
tags are meaningless for a CPU bus since by de�nition it does not depend from any other bus. These
four �elds represent the links required for backward transversal of the IOC hardware tree.

Let us consider an example of how these tags are used. Figure 2 shows the IOC hardware con�guration
of Fig. 1 with the various tags assigned. Consider the link table entry for the serial bus joining the
VMIC6016 interface card with the DF853 power supply. A BusId = 2 was assigned to this bus. The link
table entry *Hac BusPtr[2] would then point to a Hac Bus structure instance with:

BusType = HacBTyp_RsNA.

depBusId = 5 (the VMIC6016 primary port is attached to the VME bus (BusId = 5))

depDevId = VMIC6016

depLU = 0

depPort = 2

The last member of the structure Hac Bus is an instance of union Hac Vias which allocates memory
space for a BusType bus structure:

union Hac_Vias

{

struct HacBus_CPU HacCPU;

struct HacBus_VME HacVME;

struct HacBus_RSA HacRSA;

struct HacBus_RSNA HacRSNA;

struct HacBus_IPACK HacIPACK;

struct HacBus_GPIB HacGPIB;

};

The contents of each bus structure are discussed in detail below.

3.1 Bus Dependent Structures

3.1.1 CPU Bus

The CPU bus is characterized by the structure:

struct HacBus_CPU

{

unsigned short IVEC;

void *pDevPriv[HacCPU_LstDev + 1][HacCPU_MxLU + 1];

};

The �eld IVEC stores the next available interrupt vector number in the IOC. When a handler needs an
interrupt vector, it retrieves the value stored in IVEC, allocates the vector and, increments the value of
IVEC by one. Allocation of interrupt vectors at run time rather than statically (code) eliminates interrupt

7

collision, handler incompatibility due to interrupt pre-allocation and, it allows multiple instances of the
same handler to be spawned as separate tasks. IVEC is set to 80 during IOC initialization by the device
handler loader/linker.

The pointer array *pDevPriv[][] is used to store any private structures that may be required by the
device handlers (i.e. IPIC and VMECHIP2 in Figure 1). The parameter HacCPU MxLU represents
the largest number of instances allowed for any device in a CPU bus (2 at present) The parameter
HacCPU LstDev represent the last DevId de�ned for this bus type.

In the following sections, we will introduce various other busses and their corresponding handler APIs.
There is no handler API for a CPU bus. Recall from our handler execution example in Section 2 that
handlers, being software routines, reside at the CPU/memory level. Contrary to the case of all other
bus types, the handler of a device attached to the CPU bus has direct access to the device hardware
and, consequently, it does not need to communicate with any other handler to perform the requested
operation (i.e. we have reached the root of the tree).

3.1.2 VME Bus

The VME bus is characterized by the structure:

struct HacBus_VME

{

unsigned char AM[HacVME_LstDev +1][HacVME_MxLU + 1][HacVME_MxRg + 1];

unsigned int MBase[HacVME_LstDev + 1][HacVME_MxLU + 1][HacVME_MxRg + 1];

unsigned int MSize[HacVME_LstDev + 1][HacVME_MxLU + 1][HacVME_MxRg + 1];

unsigned short (*pBusFtn[HacVME_LstFtn + 2])();

void *pDevPriv[HacVME_LstDev + 1][HacVME_MxLU + 1];

};

where parameters HacVME MxLU and HacVME LstDev are similar to those de�ned previously for other
busses. The HacVME MxRg parameter represents the maximum number of register banks (i.e. non-
contiguous memory blocks) that a VME device can have (2 at present). Some VME devices use, for
example, a small amount of VME A16 address space for control registers and a larger amount of A24(A32)
address space for the data itself. For a given DevId, device instance LU and register bank number, arrays
AM[][][],MBase[][][] andMSize[][][] store the address modi�er code required to access the memory block,
its beginning address and length (in bytes) respectively. The pointer array *pDevPriv[][] is similar to
those de�ned previously for other busses.

The array of function pointers (*pBusFtn[HacVME LstFtn + 2])() holds the entry points to the VME
API functions. The VME API is given in Appendix A. Each VME API function uses an speci�c index
in the above array and the parameter HacVME LstFtn represents the last index assigned to a VME
API function. In the case of the VME API, it consists of a single function (HacVME FtnIO()) with the
following index assignment:

#define HacVME_FtnIO 0

#define HacVME_LstFtn HacVME_FtnIO

The speci�c implementation of the VME API function is provided by the device from which the bus
originates (i.e. the server device). In the example of Fig. 2, the VMECHIP2 device handler provides the
implementation of the VME API function HacVME FtnIO() for the VME bus with BusId = 5. Entry
points to the API functions of a particular bus type are held in a per bus instance structure (i.e. per

8

BusId) instead of by bus type (i.e. per BusType) because di�erent servers, which could have di�erent
internal hardware architecture, are used to manage di�erent instances of the same bus type. For example,
in Fig. 2 there are two instances of an Industry Pack bus. The bus instance with BusId = 7 is managed
by a VIPC610 device while the bus instance with BusId = 3 is managed by an IPIC device. Both of
them implement the same IPACK API (to be discussed later) but the code implementation of those API
routines are di�erent because the internal hardware architecture of the IPIC is di�erent from a VIPC610.

3.2 Serial Bus

Two di�erent structures are used for serial busses. The non-addressable serial bus (RsNA) uses an
structure of the form:

struct HacBus_RSNA /* Single-device serial bus (i.e. RS232) */

{

SEM_ID semRSNA;

unsigned short (*pBusFtn[HacRS_LstFtn + 1])();

void *pDevPriv;

};

where the pointer *pDevPriv is used to hold any private structure that the single serial device connected
to this bus may need. The array of function pointers *pBusFtn[] holds the entry points to the Serial API
functions. The Serial API is given in Appendix B and it consists of three functions with the following
index assignment in *pBusFtn[]:

#define HacRS_FtnEOB 0

#define HacRS_FtnRX 1

#define HacRS_FtnTX 2

#define HacRS_LstFtn HacRS_FtnTX

Serial interfaces like the RS232, RS422 and RS485 standards have limited bandwidth (typically less
than 10kBytes/sec) and require a two step process to retrieve a value from a given device (send re-
quest/receive response). Because of the transaction speed and steps required, there is no guarantee that
a transaction that is taken place will not be pre-empted by another transaction (i.e. transaction col-
lision). The semaphore semRSNA is provided to avoid transaction collisions. A serial device handler
must take semRSNA before performing any serial API function calls. After completing the transaction,
the handler must then release the semaphore so that another handler or another invocation of the same
handler (recall that sharable device handlers are re-entrant) by a di�erent EPICS record can proceed.

The HacBus RSA structure for an addressable serial bus (RsA) represents an extension of the HacBus RSNA
to be able to handle several devices in the same bus:

struct HacBus_RSA /* Multi-device serial bus (i.e. RS422, RS485) */

{

SEM_ID semRSA;

unsigned short LAdd[HacRS_LstDev +1][HacRS_MxLU + 1];

unsigned short (*pBusFtn[HacRS_LstFtn + 1])();

void *pDevPriv[HacRS_LstDev + 1][HacRS_MxLU + 1];

};

Most of the structure entries and parameters are similar to those described earlier. The LAdd[][] array
holds the serial address assigned to the various devices.

9

3.2.1 Industry Pack Bus

The Industry Pack bus is characterized by the structure:

struct HacBus_IPACK

{

unsigned char IPSlot[HacIPACK_LstDev +1][HacIPACK_MxLU + 1];

unsigned char IRQ[HacIPACK_LstDev + 1][HacIPACK_MxLU][HacIPACK_MxIRg + 1];

unsigned int MBase[HacIPACK_LstDev + 1][HacIPACK_MxLU + 1];

unsigned int MSize[HacIPACK_LstDev + 1][HacIPACK_MxLU +1];

unsigned short (*pBusFtn[HacIPACK_LstFtn + 1])();

void *pDevPriv[HacIPACK_LstDev + 1][HacIPACK_MxLU + 1];

};

where HacIPACK LstDev, HacIPACK MxLU and hacIPACK LstFtn are parameters similar to those
de�ned previously for other bus types. Industry Pack modules can have up to two interrupt vector
registers (IR0 and IR1). The parameter HacIPACK MxIRg represents the last interrupt vector register
number (1).

The Industry Pack bus, like CAMAC or PCI, is a slot speci�c bus. The Industry Pack standard de�nes
several address spaces for each Industry Pack module (slot): the ID, IO and MEMORY spaces. The sizes
and base addresses (beginning) of the various address spaces is de�ned by the Industry Pack standard.
The sizes are independent of slot but the base addresses are not. The device handler must know in which
slot is the device located to be able to calculate the proper base address. The slot information is kept
in the array IPSlot[][]. The array IRQ[][][] holds the interrupt request level (i.e. interrupt priority) at
which the device wants to operate.

All Industry Pack modules implement the ID and IO address spaces while only some modules imple-
ment the MEMORY space. As previously indicated, the Industry Pack standard de�nes the MEMORY
space base address and maximum range that it can be occupied by a module in a given slot. The stan-
dard does not specify however, that a module MEMORY space must begin at the base address speci�ed
in the standard (it needs only to be within the limits imposed by the standard) nor how should the
unused part of the MEMORY address space be decoded (if at all). It is relatively common practice for
manufacturers to begin the MEMORY space allocation of their modules at an address other than the
base address speci�ed by the standard (reduces cost of the hardware address decoder). For that reason,
the arrays MBase[][] and MSize[][] are used to hold the beginning address and size of MEMORY space
that a particular Industry Pack module may need.

As in the case of other busses, the pointer array *pDevPriv[][] holds any private structures that
may be required by the devices attached to this particular bus instance. The array of function pointers
*pBusFtn[] holds the entry points to the Industry Pack (IPACK) API functions. The IPACK API is
given in Appendix C and it consists of two functions with the following index assignment in *pBusFtn[]:

#define HacIPACK_FtnIO 0

#define HacIPACK_FtnIRQ 1

#define HacIPACK_LstFtn HacIPACK_FtnIRQ

3.2.2 GPIB Bus

The GPIB bus is characterized by the structure:

10

struct HacBus_GPIB

{

SEM_ID semGPIB;

unsigned char SCA;

unsigned char ADD[HacGPIB_LstDev + 1][HacGPIB_MxLU + 1];

unsigned short (*pBusFtn[HacGPIB_LstFtn + 1])();

void *pDevPriv[HacGPIB_LstDev + 1][HacGPIB_MxLU + 1];

};

The purpose of the semaphore semGPIB is similar to the one discussed previously for a serial bus.
The �eld SCA holds the GPIB address of the GPIB controller while the array ADD[][] holds the GPIB
addresses of all non-controller devices attached to this bus instance. The array of function pointers
*pBusFtn[] holds the entry points to the GPIB API functions. The GPIB API is given in Appendix D
and it consists of eleven functions with the following index assignment in *pBusFtn[]:

#define HacGPIB_FtnCAC 0

#define HacGPIB_FtnEOB 1

#define HacGPIB_FtnEOI 2

#define HacGPIB_FtnGTS 3

#define HacGPIB_FtnREN 4

#define HacGPIB_FtnRXDATA 5

#define HacGPIB_FtnSIC 6

#define HacGPIB_FtnSTAT 7

#define HacGPIB_FtnTXDATA 8

#define HacGPIB_FtnTXRAW 9

#define HacGPIB_FtnROR 10

#define HacGPIB_LstFtn HacGPIB_FtnROR

4 Device Handler Loader/Linker

The tasks of the device handler loader/linker are to load the required handlers into memory, create the
necessary link table nodes and �ll those nodes with the appropriate information for handler execution.

There are two general approaches that could be used to load/link the device handlers: delayed and
immediate. In the case of delayed load/link, the loader creates at IOC initialization time a link table
with all entries marked as uninitialized. When EPICS calls a handler with an uninitialized entry in the
link table, the loader is called to load/link the handler and mark its link table entry as initialized. The
process is repeated until all required handlers have been loaded and linked. In the case of immediate
load/link, all necessary operations are performed at IOC initialization time and the loader/linker can
then be removed from memory since it is no longer needed. Mixed approaches can also be implemented.
In the case of the Hall A controls version of EPICS, the device handler loader/linker implements the
immediate approach by forward transversal of the IOC hardware tree (i.e. from the root to the leaves).
The hardware tree con�guration is obtained from an IOC speci�c (or group of IOCs if they have the same
hardware con�guration) ASCII con�guration �le. As pointed out earlier, a con�guration �le is needed
because several type of devices (i.e. VME and GPIB) used commonly with EPICS can not be con�gured
automatically. The device handler loader can be found in $EPICS/base/src/drv/HacCfg.c where $EPICS
represents the EPICS distribution home directory.

11

Appendix E gives an example of an ASCII �le used for IOC hardware con�guration. This is actually
the hardware con�guration �le of an IOC in charge of managing the basic infrastructure (i.e. magnet
signals, cryogenics and power supplies, vaccumm, collimator and so on) of one of the two High Resolution
Spectrometers (HRS) of Hall A. Some of the Device names in Appendix E can be recognized from
our previous examples in Figs. 1 and 2 while others are either new or slightly di�erent due to space
constraints in the �gures. The HPE1313A is a VME based, 64 channels, 16 bits resolution, scanning
analog-to-digital converter (ADC) manufactured by Hewlett Packard. The VMIC1182 is a VME based,
64 channels, digital input card manufactured by VMIC while the VMIC2210 is a VME based, 64 channels,
relay card from the same manufacturer. The VMIC4140 represents a VME based, 32 channels, 12 bits
resolution, digital-to-analog converter (DAC) from VMIC while the VMIC4116 is an 8 channels, 16 bits
resolution, DAC from the same manufacturer. The DYNAPOWER and DFISIK853 are serial magnet
power supplies manufactured by Dynapower and Dan�sik respectively. The MP1000 represent serial based

LVDT readout controllers manufactured by Lucas Schaevitz.[7] The gsIP488 is an Industry Pack based
GPIB controller manufactured by GreenSprings. The LS450 GPIB represent GPIB based gaussmeters

from LakeShore[8] while the PT2025 GPIB is a GPIB based NMR manufactured by Metrolab.[9]

The forward (from the root to the leaves) declaration of the IOC hardware can be easily recognized.
A BusId must have been declared before any device can be attached to it. Since at the beginning there
is only one pre-de�ned bus, the CPU bus with BusId = 0, the con�guration �le starts by declaring the
devices attached to this bus and the busses which they give origin to. Consider the �rst device in the
con�guration �le:

1. /* BusId Device LU NumSecBuses

2. 0 VMECHIP2 0 1

3. /* DevHdlr DevHdlr_Path

4. HacNod_VmeChip2 ./core

5. /* PortNum BusType BusId (MUST be UNIQUE)

6. 0 VME 1

7. /* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DatFile

8. NONE NONE KEEP NONE

Lines beginning with /* represent comments and are not processed by the loader/linker. Line 2 declares
that one instance of device VMECHIP2, with an assigned LU = 0, is attached to BusId = 0 (the CPU
bus). It also declares that from this device originates one secondary bus (tree branch). The loader/linker
treats devices with NumSecBuses = 0 di�erent from devices with one or more secondary busses. Devices
with NumSecBuses = 0 are end-devices. They represent the boundary between the internal IOC hardware
architecture and the outside world signals that we want to monitor and/or control with EPICS. Signals
and end-devices are handled by EPICS. The �rst through the database records and the second through
the device handlers declared in the EPICS devSup.ascii �le. The loader/linker does not load any of the
end-devices handlers since these will be loaded by EPICS itself. Devices with one or more secondary
busses are tree nodes (interfaces among busses) whose existence is not known to EPICS because the
end-device handlers loaded by EPICS must be local. Line 4 declares to the loader/linker the name of
the �le containing the device handler to use for a VMECHIP2 device and its path. Line 6 declares the
type of secondary bus (VME), the Port in the VMECHIP2 from which this bus originates (0) and the
BusId assigned to this bus (1). Given the above information, the loader/linker performs the following
operations:

� Checks that the given BusId has been declared before. For that purpose it checks if the the

12

link table entry pointer *Hac BusPtr[BusId] is NULL (not previously declared) or not (already
declared). BusId = 0 is declared by the loader/linker during the creation of the link table array
and, consequently, the check yields a valid entry. The loader/linker then determines the bus type
corresponding to the given BusId.

� Checks that DevId = VMECHIP2 is a valid device for the given bus type.

� Creates an instance of the bus structure Hac Bus and stores its location in the link table entry
*Hac BusPtr[1].

� Fills the various structure �elds as BusType = VME, depBusId = 0, depDevId = VMECHIP2,
depLU = 0, depPort = 0

� Loads into the IOC memory the speci�ed �le. The loaded �le contains, besides any internal rou-
tine(s) needed by the handler, the VME API implementation routines and a handler initialization
routine with the same name than the loaded �le.

� The loader/linker then calls the handler initialization routine HacNod VmeChip2.

� The HacNod VmeChip2 routine treats the memory space allocated under the �eld Bus of the struc-
ture Hac Bus as an instance of a VME bus structure (HacBus VME). It then stores the entry points
of the VME API implementation routines in the array of function pointers *pBusFtn[] of the VME
bus structure.

Line 8 allows to call any other initialization routine that it may be needed. IHdlr represents the name of
the �le containing the initialization routine. Like in the case of the device handler, there could be many
routines in this �le but the calling point (i.e. the main routine) must have the same name than the �le.
IHdlr Path represents the directory path to retrieve IHdlr. If IHdlr Disp = UNLOAD, the loader/linker
attempts to remove from memory the main initialization routine. Anything else leaves it in memory.
IHdlr DatFile represents the path and name of any data �le that may be required by IHdlr.

Appendix F gives an example of a tree node device handler (i.e. a device with one or more Num-
SecBuses). The example choosen is for a VIPC610, a VME based Industry Pack carrier manufactured by
GreenSprings (see Figs. 1 and 2). This example has been choosen because of its simplicity. As discussed
above in the loader/linker operations, the VIPC610 device handler �le HacNod gsVipc610 contains two
routines (GsVipc610 FtnIO and GsVipc610 FtnIRQ) which implement the IPACK bus API and an ini-
tialization routine (HacNod GsVipc610) which, given a BusId, stores the entry point of the two IPACK
API functions in the corresponding link table entry. The handler is re-entrant (i.e. capable of handling
multiple VIPC610 carriers).

The operations performed by the load/linker for an end-device (NumSecBuses = 0) are simpler than
for a tree node since there are no new busses to be created. Most of the operations consists of checking
the data integrity and storing the information in already existing structures.

5 End-Device Handler Implementation

Appendix G gives the device handler implementation for a VME based HPE1313A ADC (an end-device).
The code implementation is straight forward (almost trivial) since in the scheme described in this note,
the handler code only has to deal with the internal workings of the ADC itself and not with the various
busses and interfaces located between the CPU and the ADC.

13

Depending on the EPICS record type, di�erent structures are used to pass parameters between the
records and their corresponding device handlers. None of the existing structures, however, �tted the
scheme described in this note to uniquely identify an end-device in the IOC hardware tree. A new
structure (HacIo) was created for that purpose and it is used by all the database records with sharable
device handlers. In the case of the handler given in Appendix G,

pHacIo = (struct HacIo *)&(pai->inp.value);

setups a pointer to access the information contained in the structure HacIo. That information is then
used, through the link table, to gain access to the VME bus structure where the ADC is located:

pVME = (struct HacBus_VME *)&(Hac_BusPtr[pHacIo->BusId]->Bus);

and, �nally, a request is sent to the VME API function HacVME FtnIO to retrieve the data from the
ADC:

/** Current value table located in reg bank 1, offset= 0, each entry 4 bytes **/

status = (*pVME->pBusFtn[HacVME_FtnIO])(pHacIo->BusId,HPE1313A,pHacIo->LU,

HacOp_RX,pVME->AM[HPE1313A][pHacIo->LU][1],

pVME->MBase[HPE1313A][pHacIo->LU][1] + (pHacIo->CtlPt)*4,

1,HacDTyp_Float,&Data);

The request will then propagate, with the aid of the link table, through other device handlers until it
reaches a handler for a device located at the CPU bus. Is this handler the one that actually accesses the
hardware directly and the results of that access propagate down through the hardware tree until they
reach the ADC.

6 Conclusion

Shareable device handlers have been implemented in the Hall A controls version of EPICS. The objectives
were to make the EPICS device handlers used by Hall A portable and reusable so that developer e�ort
could be minimized. Development of the shareable device handlers started in 1995 and four years of
operations have totally con�rmed our expectations. In those four years, the Hall A controls systems have
gone through innumerable changes (devices added, con�guration changes, temporary setups, etc) each
taking a small fraction of the time that would otherwise have taken with our limited personnel. We can
only hope that the EPICS community would implement the use of shareable device handlers in future
releases.

14

References

[1] EPICS documentation can be found at http://www.aps.anl.gov/asd/controls/epics-
/EpicsDocumentation/WWWPages/EpicsDoc.html.

[2] Martin R. Kraimer, Application Developers guide R3.13.0.Beta12, Chapter 10 (June 1998). Docu-
ment can be found at the location given in Ref. 1.

[3] MVME162 documentation can be found at http://www.mcg.mot.com/WebOS/omf/GSS/MCG-
/products/boards/68k-vme.html.

[4] Information concerning the VMIC1182, 2210, 4116, 4140 and 6016 can be found at
http://www.vmic.com.

[5] Documentation concerning the IP488 and VIPC610 can be found at http://www.greenspring.com.

[6] Information concerning the HP3458A DMM and HPE1313A ADC can be found at
http://www.tmo.hp.com/tmo/TMTop/English/.

[7] Documentation on the MP1000 LVDT readout can be found at http://www.schaevitz.com.

[8] Information concerning the LS450 gaussmeters can be fount at http://www.lakeshore.com.

[9] Documentation on the PT2025 NMR can be obtained at http://www.metrolab.com.

15

MEMORYCPU

IPIC

���������
���������
���������
���������

���������
���������
���������
���������

HP3458A

���������
���������
���������
���������

���������
���������
���������
���������

HP3458A

IP488

VIPC610

B
us

T
yp

e
=

 G
PI

B

P0

B
us

T
yp

e
=

 I
PA

C
K

P0

VMECHIP2

MVME162 Single Board Computer (SBC)

P0

��������
��������
��������

��������
��������
��������

P2 P15
VMIC6016

P0

DF853

BusType = RS_NA

BusType = CPU

B
us

T
yp

e
=

 V
M

E

B
usT

ype =
 IPA

C
K

P0

Figure 1: Example of an IOC hardware resource con�guration for the Motorola MVME162[3] single board
computer (SBC). In this block diagram, IPIC represents the onboard hardware bridge between the CPU
to memory bus (CPU bus for short) and the Industry Pack (IPACK) bus. The VMECHIP2 is the onboard
bridge between the CPU bus and the VME bus external to the SBC, the VMIC6016 represents a VME

based, 16 ports (channels) interface manufactured by VMIC[4] while the DF853 represents a RS232C
(non-addressable) serial (RS NA) based magnet power supply manufactured by Dan�sik. The VIPC610

is a VME based Industry Pack module carrier manufactured by GreenSprings,[5] the IP488 is an IPACK
based interface to the GPIB bus also manufactured by GreenSprings and, the HP3458A are GPIB based

Digital Multimeters from Hewlett Packard.[6]

16

MEMORYCPU

P0

DevId = IPIC
LU = 0

P0

DevId = VMECHIP2
LU = 0

DevId = VMIC6016
LU = 0

P2 P15P0

��������
��������
��������

��������
��������
��������

BusType = RS_NA
BusId = 2

DevId = DF853
LU = 0

P0
LU = 0
Devid = VIPC610

P0

B
us

Id
 =

 8

LU = 0
DevId = IP488

���������
���������
���������
���������

���������
���������
���������
���������

LU = 0
DevId = HP3458A

���������
���������
���������
���������

���������
���������
���������
���������

LU = 1
DevId = HP3458A

MVME162 Single Board Computer (SBC)

BusType = CPU
BusId = 0

B
usT

ype =
 IPA

C
K

B
usId =

 3

B
us

T
yp

e
=

 V
M

E
B

us
Id

 =
 5

B
us

T
yp

e
=

 G
PI

B

B
us

T
yp

e
=

 I
PA

C
K

B
us

Id
 =

 7

Figure 2: Example of an IOC hardware tree con�guration. The BusId, DevId, LU and Port tags discussed
in the main text have been assigned to the devices and busses of Fig. 1 to uniquely identify them. The
BusId tag has being assigned somewhat randomly to emphasize that the only requirement that this tag
must satisfy is to be unique within the particular IOC hardware tree. BusId = 0 is reserved for the CPU
bus. The LU tag must be unique but otherwise arbitrary within a given BusId and DevId. The HP3458A
DMM with LU = 0 could, for example, have been assigned other value as long as it is di�erent from
1 which is being used by the second HP3458A DMM. The Port tag for each device must be assigned
according to the scheme used by the device handler to identify the various hardware ports of the device.
Normally, this will be the numbering scheme used by the hardware manufacturer.

17

A VME Bus API

/*==*/

/* Function: HacVME_FtnIO */

/* Purpose: Read/write data buffer */

/* Return: error code */

/*==*/

unsigned short HacVME_FtnIO

(

unsigned short BusId, /* BusId of client VME device */

unsigned short DevId, /* DevId of client VME device */

unsigned short LU, /* LU of client VME device */

unsigned char OP, /* Requested op: read or write */

unsigned char AM, /* Address modifier */

unsigned int ADD, /* Address within VME space selected */

unsigned int NTRY, /* Number of buffer entries to read/write */

unsigned char DTYP, /* Data type */

void *pBUFF /* Pointer to buffer */

)

18

B Serial (RsA and RsNA) Bus API

/*==*/

/* Function: HacRS_FtnEOB */

/* Purpose: Query/set End-Of-Block (EOB) code */

/* Notes: EOB is used by HacRS_FtnRX below */

/* On reads, EOB argument returns present value */

/* On writes, EOB argument holds new value to be set */

/* If EOB = 0x00, HacRS_FtnRX ignores EOB */

/* Return: error code */

/*==*/

unsigned short HacRS_FtnEOB

(

unsigned short BusId, /* BusId of client serial device */

unsigned short DevId, /* DevId of client serial device */

unsigned short LU, /* LU of client serial device */

unsigned short OP, /* Requested op: read or write */

unsigned char EOB

)

/*==*/

/* Function: HacRS_FtnRX */

/* Purpose: Receive data buffer */

/* Notes: Function reads until EOB code is found (if enabled) or */

/* TMOUT expires. TMOUT must be > 0 */

/* Return: error code */

/*==*/

unsigned short HacRS_FtnRX

(

unsigned short BusId, /* BusId of client serial device */

unsigned short DevId, /* DevId of client serial device */

unsigned short LU, /* LU of client serial device */

unsigned short TMOUT, /* System clock ticks to complete op */

unsigned int MXBYTE, /* Buffer length */

void *pBUFF, /* Ptr to buffer */

unsigned int *BCNT /* Ptr to actual number of bytes read */

)

/*==*/

/* Function: HacRS_FtnTX */

/* Purpose: Send data buffer */

/* Notes: TMOUT must be > 0 */

19

/* Return: error code */

/*==*/

unsigned short HacRS_FtnTX

(

unsigned short BusId, /* BusId of client serial device */

unsigned short DevId, /* DevId of client serial device */

unsigned short LU, /* LU of client serial device */

unsigned short TMOUT, /* System clock ticks to complete op */

unsigned int NBYTE, /* Number of bytes to be written */

void *pBUFF /* Ptr to buffer */

)

20

C Industry Pack (IPACK) Bus API

/*==*/

/* Function: HacIPACK_FtnIO */

/* Purpose: Read/write data buffer */

/* Return: error code */

/*==*/

unsigned short HacIPACK_FtnIO

(

unsigned short BusId, /* BusId of client IP device */

unsigned short DevId, /* DevId of client IP device */

unsigned short LU, /* LU of client IP device */

unsigned char OP, /* Requested op: read OR write */

unsigned char SPCE, /* IP address space: IO, ID or MEM */

unsigned int ADD, /* Address offset within IP space selected */

unsigned int NTRY, /* Number of buffer entries to read OR write */

unsigned char DTYP, /* Data type */

void *pBUFF /* Pointer to buffer */

)

/*==*/

/* Function: HacIPACK_FtnIRQ */

/* Purpose: Query/set interrupt vector */

/* Note: On reads, IRQ holds contents of IREG */

/* On writes, value in IRQ is written to IREG */

/* Interrupts are disabled if content of IREG is 0 */

/* Return: error code */

/*==*/

unsigned short HacIPACK_FtnIRQ

(

unsigned short BusId, /* BusId of client IP device */

unsigned short DevId, /* DevId of client IP device */

unsigned short LU, /* LU of client IP device */

unsigned char OP, /* Requested op: read OR write */

unsigned char IREG, /* IP interrupt register: 0 or 1 */

unsigned char IRQ /* Interrupt vector */

)

21

D GPIB Bus API

/*==*/

/* Function: HacGPIB_FtnCAC */

/* Purpose: Take control of GPIB bus (i.e. assert ATN line). */

/* Return: error code */

/*==*/

unsigned short HacGPIB_FtnCAC

(

unsigned short BusId, /* BusId of client GPIB device */

unsigned short DevId, /* DevId of client GPIB device */

unsigned short LU, /* LU of client GPIB device */

unsigned char ASYNC /* ASYNC = 0: take control synchronously */

) /* ASYNC = 1: take control asynchronously */

/*==*/

/* Function: HacGPIB_FtnEOB */

/* Purpose: Query/set End-Of-Block (EOB) */

/* Notes: On read, EOB holds present value */

/* On write, EOB holds new value to be set */

/* EOB = 0x00 disables use of EOB */

/* Return: error code */

/*==*/

unsigned short HacGPIB_FtnEOB

(

unsigned short BusId, /* BusId of client GPIB device */

unsigned short DevId, /* DevId of client GPIB device */

unsigned short LU, /* LU of client GPIB device */

unsigned char OP, /* Requested op: read or write */

unsigned char EOB

)

/*==*/

/* Function: HacGPIB_FtnROR */

/* Purpose: Query/set Return-On-Ready flag */

/* Notes: If ROR = TRUE, the server HacGPIB_FtnTXDATA routine */

/* delays return (and any further GPIB bus activity) until */

/* the device releases the Not-Ready-For-Data (NRFD) line. */

/* Most GPIB instruments assert the NRFD line to indicate */

/* that they are not ready to receive new commands but bus */

/* activity like GTS and ATN can continue. There are a few */

/* devices which, however, can not tolerate such activity. */

22

/* On read, ROR holds present value of flag */

/* On write, ROR holds value to be set */

/* ROR is either TRUE or FALSE */

/* Return: error code */

/*==*/

unsigned short HacGPIB_FtnROR

(

unsigned short BusId, /* BusId of client GPIB device */

unsigned short DevId, /* DevId of client GPIB device */

unsigned short LU, /* LU of client GPIB device */

unsigned char OP, /* Requested op: read or write */

unsigned char ROR

)

/*==*/

/* Function: HacGPIB_FtnEOI */

/* Purpose: Query/set use of End-Of-Input (EOI) by HacGPIB_FtnTXDATA */

/* Notes: On read, EOI holds present value */

/* On write, EOI holds new value to be set */

/* HacGPIB_FtnTXDATA asserts the EOI line if EOI = TRUE */

/* Return: error code */

/*==*/

unsigned short HacGPIB_FtnEOI

(

unsigned short BusId, /* BusId of client GPIB device */

unsigned short DevId, /* DevId of client GPIB device */

unsigned short LU, /* LU of client GPIB device */

unsigned char OP, /* Requested op: read or write */

unsigned char EOI

)

/*==*/

/* Function: HacGPIB_FtnGTS */

/* Purpose: Go-To-Standby (GTS) (i.e. release ATN line) */

/* Return: error code */

/*==*/

unsigned short HacGPIB_FtnGTS

(

unsigned short BusId, /* BusId of client GPIB device */

unsigned short DevId, /* DevId of client GPIB device */

unsigned short LU /* LU of client GPIB device */

)

23

/*==*/

/* Function: HacGPIB_FtnREN */

/* Purpose: Set/release Remote Enable line (REN) */

/* Notes: REN = FALSE releases Remote Enable line */

/* REN = TRUE set Remote Enable line */

/* Return: error code */

/*==*/

unsigned short HacGPIB_FtnREN

(

unsigned short BusId, /* BusId of client GPIB device */

unsigned short DevId, /* DevId of client GPIB device */

unsigned short LU, /* LU of client GPIB device */

unsigned char REN

)

/*==*/

/* Function: HacGPIB_FtnRXDATA */

/* Purpose: Read data buffer */

/* Notes: Function reads until EOB is found (if enabled), EOI is */

/* detected or TMOUT expires. This function sets the GPIB */

/* controller as listener, the client device as talker, */

/* reads the data and clears all listeners and talkers */

/* before returning. */

/* Return: error code */

/*==*/

unsigned short HacGPIB_FtnRXDATA

(

unsigned short BusId, /* BusId of client GPIB device */

unsigned short DevId, /* DevId of client GPIB device */

unsigned short LU, /* LU of client GPIB device */

unsigned short TMOUT, /* System clock ticks. Must be > 0 */

unsigned int MXBYTE, /* Length of buffer */

void *pBUFF /* Buffer */

unsigned int *BCNT /* Number of bytes received */

)

/*==*/

/* Function: HacGPIB_FtnSIC */

/* Purpose: Send Interface Clear (SIC) */

24

/* Return: error code */

/*==*/

unsigned short HacGPIB_FtnSIC

(

unsigned short BusId, /* BusId of client GPIB device */

unsigned short DevId, /* DevId of client GPIB device */

unsigned short LU /* LU of client GPIB device */

)

/*==*/

/* Function: HacGPIB_FtnSTAT */

/* Purpose: Query present status of GPIB interface */

/* Return: error code */

/*==*/

unsigned short HacGPIB_FtnSTAT

(

unsigned short BusId, /* BusId of client GPIB device */

unsigned short DevId, /* DevId of client GPIB device */

unsigned short LU /* LU of client GPIB device */

unsigned short STAT /* status */

)

/*==*/

/* Function: HacGPIB_FtnTXDATA */

/* Purpose: Send a data buffer */

/* Notes: If the EOI flag is set (see HacGPIB_FtnEOI) then the EOI */

/* line will be asserted when the last character in pBuff */

/* is sent. Note that any EOB character that the listening */

/* might require must have been inserted in pBuff by the */

/* client routines. This routine set the client GPIB device */

/* as listener, the GPIB server as talker, sends the message*/

/* and clears all talkers and listeners in the bus. */

/* Return: error code */

/*==*/

unsigned short HacGPIB_FtnTXDATA

(

unsigned short BusId, /* BusId of client GPIB device */

unsigned short DevId, /* DevId of client GPIB device */

unsigned short LU, /* LU of client GPIB device */

unsigned short TMOUT, /* System clock ticks. Must be > 0 */

unsigned int NBYTE, /* Number of bytes to be written */

void *pBUFF /* Pointer to buffer */

25

)

/*==*/

/* Function: HacGPIB_FtnTXRAW */

/* Purpose: Raw send */

/* Notes: This routine is similar to HacGPIB_FtnTXDATA except that */

/* no talker or listener is setup. It may be used to send */

/* commands (after setting the ATN line with HacGPIB_FtnCAC)*/

/* but not data. */

/* Return: error code */

/*==*/

unsigned short HacGPIB_FtnTXRAW

(

unsigned short BusId, /* BusId of client GPIB device */

unsigned short DevId, /* DevId of client GPIB device */

unsigned short LU, /* LU of client GPIB device */

unsigned short TMOUT, /* System clock ticks. Must be > 0 */

unsigned int NBYTE, /* Number of bytes to be written */

void *pBUFF /* Pointer to buffer */

)

26

E IOC Hardware Con�guration Example

/* HacCfg.dat file

/*===

/* Define devices located on the CPU bus (BusId = 0)

/*===

/* BusId Device LU NumSecBuses

0 VMECHIP2 0 1

/* DevHdlr DevHdlr_Path

HacNod_VmeChip2 ./core

/* PortNum BusType BusId (MUST be UNIQUE)

0 VME 1

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DatFile

NONE NONE KEEP NONE

/* BusId Device LU NumSecBuses

0 IPIC 0 1

/* DevHdlr DevHdlr_Path

HacNod_IpIc ./core

/* PortNum BusType BusId (MUST be UNIQUE)

0 IPACK 50

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DatFile

NONE NONE KEEP NONE

/*===

/* Define VME devices located at BusId = 1

/*===

/* BusId Device LU NumRegBanks NumSecBuses

1 HPE1313A 0 2 0

/* RegBank AddMod MemBase MemSize

0 0x10 0xC000 0x003F

1 0x20 0x00000000 0x0003FFFF

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

HacInit_hpe1313a ./core UNLOAD ./config/HPE1313A:0.dat

/* BusId Device LU NumRegBanks NumSecBuses

1 HPE1313A 1 2 0

/* RegBank AddMod MemBase MemSize

0 0x10 0xC040 0x003F

27

1 0x20 0x00080000 0x0003FFFF

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

HacInit_hpe1313a ./core UNLOAD ./config/HPE1313A:1.dat

/* BusId Device LU NumRegBanks NumSecBuses

1 VMIC1182 0 1 0

/* RegBank AddMod MemBase MemSize

0 0x0020 0x00040000 0x00003FFF

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

HacInit_VME ./core KEEP ./config/VMIC1182:0.dat

/* BusId Device LU NumRegBanks NumSecBuses

1 VMIC1182 1 1 0

/* RegBank AddMod MemBase MemSize

0 0x0020 0x00044000 0x00003FFF

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

HacInit_VME ./core KEEP ./config/VMIC1182:1.dat

/* BusId Device LU NumRegBanks NumSecBuses

1 VMIC2210 0 1 0

/* RegBank AddMod MemBase MemSize

0 0x0010 0x0000 0x001F

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

HacInit_VME ./core KEEP ./config/VMIC2210:0.dat

/* BusId Device LU NumRegBanks NumSecBuses

1 VMIC4140 0 1 0

/* RegBank AddMod MemBase MemSize

0 0x0010 0x0300 0x007F

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

HacInit_VME ./core KEEP ./config/VMIC4140:0.dat

/* BusId Device LU NumRegBanks NumSecBuses

1 VMIC4116 0 1 0

/* RegBank AddMod MemBase MemSize

0 0x0010 0x0400 0x0012

28

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

HacInit_VME ./core KEEP ./config/VMIC4116:0.dat

/* BusId Device LU NumRegBanks NumSecBuses

1 VMIC6016 1 2 4

/* RegBank AddMod MemBase MemSize

0 0x0010 0x0200 0x00FF

1 0x0020 0x000C0000 0x0003FFFF

/* DevHdlr DevHdlr_Path

HacNod_Vmic6016 ./core

/* PortNum BusType BusId (Must be UNIQUE)

0 RS_NA 18

1 RS_NA 19

/* 2 RS_NA 20

/* 3 RS_NA 21

/* 4 RS_NA 22

/* 5 RS_NA 23

/* 6 RS_NA 25

/* 7 RS_NA 24

/* 8 RS_NA 26

/* 9 RS_NA 27

/* 10 RS_NA 28

11 RS_NA 29

12 RS_NA 30

/* 13 RS_NA 31

/* 14 RS_NA 32

/* 15 RS_NA 33

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

HacInit_Vmic6016 ./core UNLOAD ./config/VMIC6016:1.dat

/*===

/* Define RS_NA devices located at BusId = 18

/*===

/* BusId Device LU NumSecBuses

18 DYNAPOWER 0 0

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

NONE NONE UNLOAD NONE

/*===

/* Define RS_NA devices located at BusId = 19

29

/*===

/* BusId Device LU NumSecBuses

19 DFISIK853 0 0

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

NONE NONE UNLOAD NONE

/*===

/* Define RS_NA devices located at BusId = 29

/*===

/* BusId Device LU NumSecBuses

29 MP1000 0 0

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

NONE NONE UNLOAD NONE

/*===

/* Define RS_NA devices located at BusId = 30

/*===

/* BusId Device LU NumSecBuses

30 MP1000 0 0

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

NONE NONE UNLOAD NONE

/*===

/* Define IPACK devices located at BusId = 50

/*===

/* BusId Device LU NumSecBuses

50 gsIP488 0 1

/* IP-slot MemBase MemSize (0x00 = none) IRQ0 IRQ1

0 0x00 0x00 0x03 0x00

/* DevHdlr DevHdlr_Path

HacNod_GsIp488 ./core

/* PortNum BusType BusId (MUST be UNIQUE)

0 GPIB 51

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DatFile

HacInit_GsIp488 ./core UNLOAD ./config/gsIP488:0.dat

/* BusId Device LU NumSecBuses

50 gsIP488 1 1

30

/* IP-slot MemBase MemSize (0x00 = none) IRQ0 IRQ1

1 0x00 0x00 0x03 0x00

/* DevHdlr DevHdlr_Path

HacNod_GsIp488 ./core

/* PortNum BusType BusId (MUST be UNIQUE)

0 GPIB 52

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DatFile

HacInit_GsIp488 ./core UNLOAD ./config/gsIP488:1.dat

/*===

/* Define GPIB devices located at BusId = 51

/*===

/* BusId Device LU GPIBAdd NumSecBuses

51 HP3458A 0 1 0

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

HacInit_hp3458a_HRS ./core UNLOAD NONE

/* BusId Device LU GPIBAdd NumSecBuses

51 HP3458A 1 2 0

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

HacInit_hp3458a_HRS ./core UNLOAD NONE

/* BusId Device LU GPIBAdd NumSecBuses

51 HP3458A 2 3 0

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

HacInit_hp3458a_HRS ./core UNLOAD NONE

/* BusId Device LU GPIBAdd NumSecBuses

51 LS450_GPIB 0 4 0

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

NONE ./core UNLOAD NONE

/* BusId Device LU GPIBAdd NumSecBuses

51 LS450_GPIB 1 5 0

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

NONE ./core UNLOAD NONE

31

/* BusId Device LU GPIBAdd NumSecBuses

51 LS450_GPIB 2 6 0

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

NONE ./core UNLOAD NONE

/* BusId Device LU GPIBAdd NumSecBuses

51 LS450_GPIB 3 7 0

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

NONE ./core UNLOAD NONE

/*===

/* Define GPIB devices located at BusId = 51

/*===

/* BusId Device LU GPIBAdd NumSecBuses

52 PT2025_GPIB 0 10 0

/* IHdlr IHdlr_Path IHdlr_Disp IHdlr_DataFile

HacInit_pt2025 ./core UNLOAD ./config/HacH_PT2025.dat

32

F HacNod GsVipc610 Device Handler File

/***

* HacNod_GsVipc610.c

*

* Hall A Controls - hardware tree node driver:

* Device model : Green Spring VIPC610

* Device type : VME slave 4-slot IPACK carrier.

* Requirements : Hall A Controls (HAC) hardware configuration architecture.

*

* J. Gomez - Jefferson Lab - January.1997

***/

#include <Hac_Cfg.h>

#define GsVipc610_FtnCnt 2

/**

* HacNod_GsVipc610

* Called by HacCfg.c during configuration of the HAC hardware tree.

* Links IPACK server functions provided by the Green Spring VIPC610 to the IPACK bus

* instance given by IPACKBusId.

***/

int HacNod_GsVipc610(int IPACKBusId)

{

int i,j;

unsigned char Fnd;

SYM_TYPE pType;

unsigned short (*pHdl)();

struct HacBus_IPACK *pIPACK;

/* Generic name of IPACK server functions supported by the Green Spring VIPC610 */

/* Names MUST match those defined in Hac_Cfg.h */

char FtnSrch[GsVipc610_FtnCnt][30] =

{

"HacIPACK_FtnIO", "HacIPACK_FtnIRQ"

};

/* Private name of IPACK server functions supported by the Green Spring VIPC610 */

char GsVipc610Ftn[GsVipc610_FtnCnt][30]=

{

"_GsVipc610_FtnIO", "_GsVipc610_FtnIRQ"

};

pIPACK = (struct HacBus_IPACK *)&(Hac_BusPtr[IPACKBusId]->Bus);

for(i=0;i<GsVipc610_FtnCnt;i++)

{

Fnd = FALSE;

33

for(j=0; j<=HacIPACK_LstFtn; j++)

{

if(strcmp(HacIPACK_FtnName[j],FtnSrch[i]) == 0)

{

Fnd = TRUE;

if(symFindByName(sysSymTbl,GsVipc610Ftn[i], (void *)&pHdl, &pType) != OK)

{

logMsg("HacNod_GsVipc610 @ IPACK BusId %hu: Ftn %s not in sysSymTbl.\n",

IPACKBusId,GsVipc610Ftn[i],0,0,0,0);

return(-1);

}

else

{

pIPACK->pBusFtn[j] = pHdl;

}

}

}

if(!Fnd)

{

logMsg("HacNod_GsVipc610 @ IPACK BusId %hu: No such generic IPACK Ftn %s available.\n",

IPACKBusId,FtnSrch[i],0,0,0,0);

return(-1);

}

}

return(0);

};

/**

* GsVipc610_FtnIO

**/

unsigned short GsVipc610_FtnIO

(

unsigned short BusId,

unsigned short DevId,

unsigned short LU,

unsigned char OP,

unsigned char SPCE,

unsigned int ADD,

unsigned int NTRY,

unsigned char DTYP,

void *pBUFF

)

{

unsigned int AbsAdd = 0, IPSlot;

34

unsigned short MyBusId, MyLU, ERR = 0;

struct HacBus_IPACK *pIPACK;

struct HacBus_VME *pVME;

pIPACK = (struct HacBus_IPACK *)&(Hac_BusPtr[BusId]->Bus);

IPSlot = pIPACK->IPSlot[DevId][LU];

if(IPSlot > 3)

{

/* Green Spring VIPC610 can handle up to 4 Industry Packs */

logMsg("GsVipc610_FtnIO: IPSlot %u > 3.\n",IPSlot,0,0,0,0,0);

return(HacErr_ARGOP);

}

/* Determine BusId and LU of this Green Spring VIPC610. */

MyBusId = Hac_BusPtr[BusId]->depBusId;

MyLU = Hac_BusPtr[BusId]->depLU;

pVME = (struct HacBus_VME *)&(Hac_BusPtr[MyBusId]->Bus);

/* IPACK space being requested */

switch(SPCE)

{

case(HacIPACK_IO):

AbsAdd = pVME->MBase[gsVIPC610][MyLU][0] + 0x0100 * IPSlot + ADD;

break;

case(HacIPACK_ID):

AbsAdd = pVME->MBase[gsVIPC610][MyLU][0] + 0x0100 * IPSlot + 0x0080 + ADD;

break;

case(HacIPACK_MEM):

logMsg("GsVipc610_FtnIO @ BusId %hu, LU %hu: memory operations not implemented.\n",

MyBusId,MyLU,0,0,0,0);

return(HacErr_ARGOP);

break;

default:

logMsg("GsVipc610_FtnIO @ BusId %hu, LU %hu: unknown SPCE code %x.\n",

SPCE,0,0,0,0,0);

return(HacErr_ARGOP);

break;

};

/* Check data type before requesting op */

switch(DTYP)

{

35

case(HacDTyp_UShort):

case(HacDTyp_UChar):

case(HacDTyp_UInt):

case(HacDTyp_Float):

ERR = (*pVME->pBusFtn[HacVME_FtnIO])(MyBusId,gsVIPC610,MyLU,OP,

pVME->AM[gsVIPC610][MyLU][0],AbsAdd,NTRY,DTYP,pBUFF);

if(ERR != 0) logMsg("GsVipc610_FtnIO @ BusId %hu, LU %hu: err %x from VME server.\n",

MyBusId,MyLU,ERR,0,0,0);

break;

default:

logMsg("GsVipc610_FtnIO: unknown DTYP code %x.\n",DTYP,0,0,0,0,0);

return(HacErr_ARGOP);

break;

}

return(ERR);

};

/***

* GsVipc610_FtnIRQ

* The Green Spring VIPC610 sets the IRQ with jumpers.

* No way to read back value from hardware. Return contents IRQ array

* in structure HacBus_IPACK

***/

unsigned int GsVipc610_FtnIRQ

(

unsigned short BusId,

unsigned short DevId,

unsigned short LU,

unsigned char OP,

unsigned char IREG,

unsigned char IRQ

)

{

unsigned int IPSlot;

unsigned short MyBusId,MyLU;

struct HacBus_IPACK *pIPACK;

pIPACK = (struct HacBus_IPACK *)&(Hac_BusPtr[BusId]->Bus);

IPSlot = pIPACK->IPSlot[DevId][LU];

MyBusId = Hac_BusPtr[BusId]->depBusId;

MyLU = Hac_BusPtr[BusId]->depLU;

if(IPSlot > 3)

36

{

/* VIPC610 can handle up to 4 Industry Packs */

logMsg("GsVipc610_FtnIRQ @ BusId %hu, LU %hu: IPSlot %u > 3.\n",

MyBusId,MyLU,IPSlot,0,0,0);

return(HacErr_ARGOP);

}

/* Perform operation */

switch(OP)

{

case(HacOp_RX):

if(IREG == 0)

{

IRQ = pIPACK->IRQ[DevId][LU][0];

}

else

{

IRQ = pIPACK->IRQ[DevId][LU][1];

}

break;

case(HacOp_TX):

if(IRQ & 0x07)sysIntEnable(IRQ & 0x07);

break;

default:

logMsg("GsVipc610_FtnIRQ @ BusId %hu, LU %hu: unknown OP code %x.\n",

MyBusId,MyLU,OP,0,0,0);

return(HacErr_ARGOP);

break;

}

return(0);

};

37

G HPE1313A Device Handler

/***

* HacAi_hpe1313a.c

*

* EPICS device handler:

* Record type : analog input.

* Device model : HPE1313A from Hewlett-Packard (HP).

* Device type : 32/64 channels high speed scanning ADC.

* Requirements : Hall A Controls (HAC) hardware configuration architecture.

*

* J. Gomez - CEBAF - 20.June.1995

*

* Modified to accomodate changes in the Hall A Controls (HAC) hardware tree

* architecture.

* J. Gomez - Jefferson Lab - November.1996

***/

#include <vxWorks.h>

#include <types.h>

#include <stdioLib.h>

#include <string.h>

#include <alarm.h>

#include <cvtTable.h>

#include <dbDefs.h>

#include <dbAccess.h>

#include <recSup.h>

#include <devSup.h>

#include <link.h>

#include <dbScan.h>

#include <aiRecord.h>

#include <Hac_Cfg.h>

static long init_record();

static long read_ai();

struct {

long number;

DEVSUPFUN report;

DEVSUPFUN init;

DEVSUPFUN init_record;

DEVSUPFUN get_ioint_info;

DEVSUPFUN read_ai;

DEVSUPFUN special_linconv;

} HacAi_hpe1313a={

38

6,

NULL,

NULL,

init_record,

NULL,

read_ai,

NULL};

static long init_record(struct aiRecord *pai)

{

struct HacIo *pHacIo;

switch (pai->inp.type)

{

case(HAC_IO):

pai->udf = FALSE;

break;

default:

recGblRecordError(S_db_badField,(void *)pai,

"HacAi_hpe1313a(init_record) Illegal INP field");

return(S_db_badField);

}

return(0);

};

/**

* read_ai

**/

static long read_ai(struct aiRecord *pai)

{

float Data = 0.0;

unsigned short status;

struct HacIo *pHacIo;

struct HacBus_VME *pVME;

pHacIo = (struct HacIo *)&(pai->inp.value);

pVME = (struct HacBus_VME *)&(Hac_BusPtr[pHacIo->BusId]->Bus);

/** Current value table located in reg bank 1, offset= 0, each entry 4 bytes **/

status = (*pVME->pBusFtn[HacVME_FtnIO])(pHacIo->BusId,HPE1313A,pHacIo->LU,

HacOp_RX,pVME->AM[HPE1313A][pHacIo->LU][1],

pVME->MBase[HPE1313A][pHacIo->LU][1] + (pHacIo->CtlPt)*4,

1,HacDTyp_Float,&Data);

39

if(status != 0)

{

logMsg("HacAi_hpe1313a(read_ai) @ BusId %d, LU %d, Chann %d: status %x\n",

pHacIo->BusId,pHacIo->LU,pHacIo->CtlPt,status,0,0);

}

/** Assumes Auto-range, +/- 16 volts inp. max **/

pai->val = pai->egul + (Data + 16.0)*(pai->eguf - pai->egul)/32.0;

return(2); /* do not convert - conversion taken care above */

}

40

