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At Gent (Dec. 1-3, 1999) we discussed on how to incorporate realistic beam profiles
(beamz, beamy) in the simulation. This memo summarizes what has been proposed:
to use flat beam profiles to generate the simulated events, and afterwards to use these
events with a weight taking into account experimental shapes.

This paper is the sum of two independent memos from Clermont and Gent, which
have been simply joined together. They correspond to Parts I and IL




1 PARTII - principle of re-weighing simulated
events

H.Fonwieille, S.Jaminion,
LPC-Clermont

1.1 Luminosity and Solid angle

We first remind how to use the simulation to get the experimental cross section in
one physics bin j (= one bin in the physics variables: cos Ovvr Qoms €te. Up to five
variables can be defined, as the €p — epy cross section is 5-fold differential).

When running VCSSIM one generates Ny events (ep — epy) in the target, i.e.
before any acceptance cuts. Nace events go into the acceptance of the spectrome-
ters, and Ny, (5) = Nyim(j) events are found finally in the physics bin J after all
reconstruction cuts. L, is the integrated simulated luminosity that has been nec-
essary to create all these events. Then one calculates the solid angle (or “geometrical
efficiency” as named by Luc) in the physics bin J by the equation:

. (7)) = Naim(j)
dQsz‘m(]) - Lsim X dsaBH—i-Born(j) . - (1)

where d°055, porn (7) is a theoretical cross section. For VCS-MAMI the choice was
to evaluate this theoretica)l cross section at the central point of the physics bin (but
other choices can be made). The integrated luminosity Ly, is caleulated by the
code, and its value is printed in an outputfile !. )

* Remark about luminosity: For what follows (cf. eq.(6)), we just need to
explicitely state that the luminosity is proportional to the number of generated
events:

Lom =Ny x T in picobarn™! (2)

T is a global factor that can be seen as depending on target length, target density,
etc: this is the experimental definition of luminosity. Actually Luc’s definition of
the luminosity in VCSSIM is different, although not in conflict: it is the sum over
all events in a well defined phase space, devided by the cross section integral over
that phase space.

1ir.'xversely, one cannot ask for a given luminosity as an input,
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1.2 Beam profile

The transverse beam profile (z and y) changes, or may change, from run to rum.
What is the most economic way to take that into account in the simulation? we
want to avoid creating many «simulated runs” corresponding to all possible observed

beam profiles.
One can propose the following method.
e simulated beam profile

For a given setting, we propose to run VCOSSIM with a FLAT beam profile in x
and y, within large bounds [A, B] and [C, D] covering the full experimental range.
Example: [A,B] = [C,D] = [-8,+8) mm. This is the “vertex” generation level,
i.e. before any spectrometer acceptance cuts. Figure 1-a shows vertex spectrum of
x=beamz and figure 1-b shows the same spectrum for the simulated events which
passed the acceptance cuts (warning: it’s a figure of principle, the shape does not
pretend to be realistic). So in figure 1 the number of events is No (left) and Naec
(right), and the corresponding luminosity is Lsim.

1.a 1.b

(u.a.) (u.a.)

VCSSIM VCSSIM

Figure 1:

e experimental beam profile

Figure 2-a shows beamI and beamy spectra for a given run. Let’s denote these
experimental distributions Fror(z)dz and Foer(y)dy.- One may also sum up a series
of runs with different beam profiles; the cumulated distributions of beamz and beamy
may become more complex, cf. figure 2-b, but the notations and method still hold.

N.B. in principle the true beam profile should be obtained most directly from T8 events.
Beam profiles obtained from T1 or TS5 events are biased because they include convolution
by spectrometer acceptance and cross section. But maybe this effect can be neglected? it
has to be checked.

¢ Re-weighing the simulation

In order for the simulation to reproduce an experimental profile, one can just change
the weight w of each simulated event: divide by the “old weight” and multiply by a
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Figure 2:
new one,
w( event # §) = Lnew (3)
Woral?

The “old weight” is the implicit weight attached to each event in VCSSIM; for a
flat beam profile, it is a constant, it does not depend on (2;, ;)= beam coordinates
on target for simulated event # i. The new weight takes into account the real beam
profile, and its value depends on (z:,%:). To ensure proper normalization, we choose
the following definition of the weights for simulated event # i

X Fver(yi) dy
D
| Fhor(z)dz /C Foer(y)dy

- (4)
Phor(xz') dz % Pver(yz') dy
B

P d DP
| Pror(2)dz /C er (1) dy

Le. each distribution function is divided by its own integral. Pruor(z)dz is a uniform
distribution between A and B (same for y) '
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K, dx

Poor(z)dr = (_BJ—_Aj with K, = arbitrary constant factor.
: d K, d
A (B-A) ./C (D-C)
. 1 x dxdy
- B-AD-0)

Thus we propose to use the simulated event # i with a weight equal to:

wii) = — @)« (B ) x —prell (D -c) (5-bis)
/ Fhor(a:)dz /(; Fver(y)dy

A

To get the solid angle dQim(j) in physics bin j, the re-weighing means:

Nace(7) Nace(d)
replace  Ngm(j) = S () by  Nam(j) = Z (w(i) #1)
i=0 i=1

(6)
No NO
replace  Lsim = [ ;(1) ]XxT by Lsim=| Z(w(z) #1) | xT

It turns out that the re-weighing leaves Lgim unchanged. This is due to the choice of
weight normalizations. To show this intuitively: some of the w(i) are smaller than 1, others
are larger than 1, and the whole sum over Ny is unchanged. To show this quantitatively,
one just has to remind the usual equivalence between a mathematical integral and a
Monte-Carlo sum (here in 2D):

No
[B Fpor()dz x JE Foer(y)dy = (S Fror (1) Frer (i) ] x [ E=25E=2) | (7)

i=1

This relation holds provided that the Monte-Carlo events have been generated in a flat
distribution, between A and B for z; and between C and D for y; (this is the case here).

On the one hand the re-weighing does not change the denominator of the solid
angle, but on the other hand it may change the value of the numerator Neim(J)-
This is indeed what we want: it expresses the fact that the acceptance may (slightly)
change for different beam positions.




One last point: the functions Fp,,, F,.. can be fitted to the experimental data.
The difficulty may be to find a good parametric function, that can be integrated
analytically. Alternatively, the functions Fhor, Fier can be taken to be just the
content of experimental distributions, bin per bin in z and y with a fine enough bin

Below are some examples to get familiar with the re-weighing procedure. Example
1 is a simple mathematical case, it is mentioned because we discussed it at Gent.
Example 2 deals with a realistic beam profile obtained in one run. Example 3 is g
generalization to cumulated runs with possibly different beam profiles.

* Example 1. The experimental beam profile is flat but in reduced_ windows [:vl,zz]
and [y;,yo] instead of [4,B] and [C, D). This was discussed at Gent as a study case.

Fhor(z)dz = Gz/(z2 — ;) for z € [z), 2]
=0

Fhor(z)dz otherwise
G, = arbitrary constant.
B z2 2 Gy
/ Fhor(z)dz = / Fhor(z)dz = / drz = G,
A z z T2—IT

(same in y). So:

wd) = B4 « 5,1—35% for z; € [z1,25] and g € [y, 1)
w(i) = 0 otherwise.

Ezample of application: consider [4,B] = [C, D] = [48, +8] mm and [z, zo) = [v1,92] =
[~4,+4] mm. = w(i) = 4 or 0, depending on the (z;, vi) of the event; see figure 3.

In the sum giving Neim(7): assign weight=0 to events which have z; outside [z1,22)] or
Yi outside [y, yo], and assign weight=4 to the other events. If the simulated beam profile,
after acceptance, is like in figure 1-b, this will result in:

- a little less than 3/4 of the events having zero weight;
- a little more than 1/4 of the events having weight =4.
Consequently, the solid angle dQgim (5) corresponding to the reduced beam windows will
be slightly larger than the solid angle computed for the large beam windows [4, B],[C, D).




(a.a.)
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Figure 3:

e Example 2. General case where the experimental beam profile is given bin per bin
in z and y. Numbers per bin that are indicated below correspond to the spectra of figure
2-a.

Profile Scan: from Lower Edge= -8mm, to Upper Edge= -+8 mm
bin width= 0.25 mm ; number of bins= 64 (in  or y)

[ Experimental distribution

z-bin # 20130 |31 |32 [33 [34 [35 |36 [37 |38]..]64

[

counts/bin [ 0 |0 | 83 | 783 | 469 | 398 394 [ 423 | 855 (195 |0 0 1010

Total number of events= 3600

—

y-bin # 50130 |31 |32 [33 [34 [35 [36 |37 |38]..]|64

counts/bin |00 |0 |0 18 | 725|600 | 515 [ 510 [ 654 [ 576 |2 |0 | O

Total number of events= 3600

For a simulated event pertaining to a certain bin, the distribution functions Fp,r and
Fyer take the value:

counts in the bin in z -1
Frop = # 0.25 (mm )

counts in the bin in _
Foer = # 0.25 4 (mm 1)

Their integrals are:




[ Fror(@)dz = Y CoUMS per bin . (q0 onr 0o mm) = 3600
bins .
[ Foer(y)dy = Y Fcoumts per bin  (p ooher 60 mm) = 3600

bins

For example, a simulated event of beam coordinates (x;,y;) falling in bin # 34 in z and |
# 31 in y has the weight:

Yy — 423 16(mm 18 16 _
w(d) = [ 3% - 04‘25m(m'_25m 1% { 3360 - Ga(mmy | = 2.406

The resulting weights per bin in a 2D (z,y) table are shown below. iz is the bin number
inz, 3y is the bin number in Y- These weights have to be used with Lgim unchanged, i.e.
as it comes out of VCSSIM. :

iy --> 29 30 31 32 33 34 35 36 37 38 39
ix ********************************************************************
27 * .0 .0 .0 .0 .0 .0 0 0 .0 .0 .0
28 * .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
29 x .0 .0 -5 19.0 15.7 13.5 13.4 17.2 15.1 1 .0
30 * .0 -0 4.5 179.4 148.5 127.4 126.2 161.8 142.5 .5 .0
31 * .0 -0 2.7 107.5 88.9 76.3 75.6 96.9 85.4 .3 .0
32 * .0 -0 2.3 91.2 75.5 64.8 64.2 82.3 72.5 .3 .0
33 * .0 .0 2.2 90.3 74.7 64.1 63.5 81.4 71.7 .2 .0
34 * .0 -0 2.4 96.9 80.2 68.8 68.2 87.4- 77.0 .3 .0
35 = .0 0 4.9 195.9 162.1 139.2 137.8 176.7 155.6 .5 .0
36 * .0 0 1.1 44.7 37.0 31.7 31.4 40.3 35.5 .1 .0
37 * .0 .0 .0 .0 .0 .0 0 .0 .0 .0 .0
38 = .0 .0 .0 .0 .0 .0 0 0 .0 .0 .0

******************************il_l*************************************#**

* Example 3. We now want to cumulate several runs with different beam profiles.

For the beam profile cumulated over runs, care must be taken to add the beam histograms
proportionally to the incoming charge of each run. Then the method explained in example
2 applies to this case in a straightforward way. From the point of view of beam profile,
this method allows to treat all runs of a given VCS setting of da-1 or da-2 as one single
big run, to be associated to one single simulation setting from VCSSIM.

It would be nice if we could find such a unified method to treat other problems, such as
the variations of E-arm mispointing during a VCS setting...
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e Application 4: Details of the procedure adopted at present time in our analysis code.

Experimental beam profiles are built from T5 events. This choice is made for practical
purposes: i) the T5 are the input events of the VCS analysis ; ii) we take all T5 (no cuts),
this provides large statistics and hence smooth distributions in beamzx, beamy.

The steps for building the cumulated distributions Fhor—cumut () and Fyer—cumul(y) over
several runs are the following:

o define the bounds A, B,C, D and the binning in beamz, beamy. For simplicity, the
bounds should match the ones used in VCSSIM.

e each experimental T5 event is put in a bin (iz,iy) according to its values of
beamz, beamy. One count is added in Fhor(iz) and in Fyer(iy) -

e at the end of the run, the possibility is offered to “symmetrize” the distributions
Fhor and Fyer, i.€. to change them in such a way that the two peaks? reach the same
height. This is done using a slope factor versus beamz or beamy.

e then, at the end of the run, a renormalization factor is applied to the horizontal
distribution:

Fhor(z) = Fhor(z) * Q/(integral of Fhor)

in order to make proper addition of runs with different charges Q. This factor is not
applied to the vertical distribution, because it is a renormalization of the weight,
and the weight will always be computed as the product Fhor X Foer-

e then, at the end of the run, one adds the distribution obtained in the run to the
distribution cumulated over runs: Fhor—cumul () = Fhor—cumut(Z) + Fhor (z) (same
for y).

Reset Fhor, Frer for next run.

e when all the runs of a given setting have been analyzed, one has in Fhor—cumul and
Fyer—cumul the distributions representing the beam profile of cumulated runs. Their
integrals are calculated: I, and Iy,

e in the analysis of simulated events of this setting; each event is put in a bin (iz, iy)
according to its values of beamz, bearny. The event weight is computed as:

Fhor—cumw (iT) X Fver—cu_ﬂu_l(iy) x(B—A) (D-C)
I x I :

weight =

2Usually, if the beam position and raster amplitude were stable during the run, the beam profile
in z or y displays two peaks and a valley in-between.
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2 PART II - Determination of the geometrical ef-
- ficiency for realistic beam profiles

Luc Van Hoorebeke
University of Gent

I present a different view on the way to obtain geometrical efficiencies
for realistic beam profiles, giving exactly the same result as Helene’s
‘approach

2.1 General definition of geometrical efficiency

In general, if one performs a simulation containing the cross section behaviour one
can write for the corrected geometrical efficiency (I try to use as much as possible
the same notations as Helene, so see her text for the definition of notations. I drop
however the index (j) for the bin, all what I write below is true for any bin in phase
space):

N, sim

Lgim.ddc BH+Born

(8)

AQ.en'm =

The above expression is true for any beam profile. We would like to express the
above expression for any beam profile using results obtained with a flat beam profile.
This would allow us to perform simulations using a flat beam profile only, and
prevent a lot of simulations each with another beam profile. Indeed, it is a fact that
AQyim is a quantity which depends on the beam profile, certainly when the cross
section behaviour is taken into account.

2.2 Introducing a flat beam profile
To simplify things I work in one dimension only, the x-dimension. One has to
consider the fact that AQqim is a quantity that depends on x. If one considers

AQyim to be a continuous function of x, one can write the number of counts in the
expression above in a general way:

' 22 dL,, T
Nsim = /1 d50’BH+Born-AQsim(z)-"—ii":;L)‘d$ (9)

where %ﬁ(ﬁ represents the actual beam profile used in the simulation, since the
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integrated luminosity is the product of integrated charge and target thickness and
the target thickness is independent of x. zl and z2 are the limits of the charge
distribution on the target.

Taking infinitesimal bins in x, one can define AQgim () as:

dN,;';(I!dI

AQ m(z") = im \T
st %&i‘i—ldfl:.dsaBH+Barn

(10)

Remark that the above expression is true for any beam profile. In particular, it is
also true for a flat beam profile. So, if one performs a simulation using a flat beam
profile, as we want to do, one can write for AQuim(2):

dNsim, 1ot () 3.
AQim(T) = g7 o Y
sim d_l_ﬂéjxla_t(?_)dx,dsdsH-o-Barn

Now we can rewrite formula (8), which represents the geometrical efficiency ob-
tained with a simulation using any beam profile, using expression (11), by substi-
tuting (11) in (9) and (9) in (8):

dN,; lat(®)
2 15 sim, f dx dL m(z
2 d*0BH+Born T 12 g Pommen dLsim(@) g

. H
AQyim = S =

(12)

Lgim-%0 BH+Born

or

dN,i at(®
z2 ?—;"i&:))ﬁ dLsim(2) e
dx

zl * dLlyim flat'® *
dz

— dz

Ansim =

13
Lsim-dsa BH+Born ( )

which becomes, dropping out a few dz’s and replacing some factors:

1 dlgim(2)
f22 T dz

aimn dNaim,[lat(z) d.T
zl dLaim@,[lat(z) * dz

AQuim = (14)

d®0BH+Born

The above expression allows to obtain the geometrical efficiency a simulation with

an actual beam profile would yield, using the result from a simulation with a flat
beam profile. Indeed, let us consider all “components” in expression (14):

. d—‘\-”*—":fz“i@da: is the number of counts from the flat simulation present in an
infinetisimal bin dx at position x. One can generalize this to the number of
counts in & bin around x, in which case the integral will become a sum over
bins.
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dL; . . .
) L-sli %(—“2 is the normalized actual beam profile, since of course Lg;, =
m

22 dLgim(z
Jar Sepltldz

zl

. &’ﬂiz&*(ﬂ is simply given by L—%’ﬂ‘;—‘, where L, flat 18 the integrated lumi-
nosity from the flat profile simu&ation, and A and B are the x-borders of this
simulation (which should 6f course include z1 and z2).

. d5oBH+ Born 1S the cross section in a point in the phase space bin.

Conclusion: given the results of a simulation with s flat beam profile, and given an
actual beam profile, a]l ingredients are there to apply equation (14) to obtain the

2.3 The link with Helene’s results

Given the fact that dL_"""gzﬂ‘ﬁl = L(’Tf;,”}%, We can rewrite equation (14) as:

22 1 dL,;,;gz] (B _ A) st:‘mm, flat () dr

AQsim = 2 Loin

(15)

Lsz‘m,flat -d50'BH+Ba1'n '

So, one notices that the events %ﬂiﬂ’”—)dz at position x are weighted by
dx

L—i;gl‘—"jl’;iﬂ(B ~ A) which is éxactly. the x-component of the weight factor w which

1s given by Helene in eq.(5-bis). Indeed, we have

Fror(@) 1 dLyn(e)

= 16)
f,f Fhor(l')d(r Lgim dr ( )

The left and right hand of the above equation represent the normalized shape of
the beam profile, and Helene’s result is for the case z1 = A and 79 = B

It is clear that everything above is also true for the y-component part.

So, both views yield the same result!
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VCS-E93050

A study of the influence of
horizontal beam position on solid angle
for coincidence VCS events

S.Jaminion, H. Fonvieille
LPC-Clermont

January 2000
For the E93050 Collaboration

We have studied how the solid angle for p(e, ¢'p)y coincidence events behaves as
a function of the horizontal beam position on target (beamz). This gives an idea of
what will be the systematic error on the measured (ep — epy) cross sections due to
systematic uncertainty on beamz in the experiment.

Experimentally, the systematic error on beam coordinates at target is mostly due
to limited knowledge of the absolute position of the Beam Position Monitors BPM-
A and BPM-B in Hall A Frame. The main conclusion of the present study is that
with “BPM offsets” known to (?) & 0.5 mm, one gets systematic effects on the solid
angle that can reach a few % locally in the VCS phase space.




1 Principle

Such systematic studies are most suitably done with a simulation, in which the
variation of parameters is under control. We have used VCSSIM simulation code
and generated coincidence events of one V(S setting: da-2-12.

VCSSIM allows flexibility in beam profile definition. We choosed a delta function
in beamz (also in beamy), and the position of this delta-function was moved by steps
of 2.5 mm. The solid angle was determined for each step.

This solid angle can be:

® an integral one, i.e. integrated over the whole acceptance

* a differential one, i.e. determined in one phase space bin j. By bin we mean
a bin in ¢osf,y,em and e Which are the main variables for the extraction of
polarizabilities.

So a first part will be devoted to integral solid angles, dnd a second part to solid

angles per bin. We define the (differential) solid angle AQ(5) in physics bin J by:

A = el o

where Nyim(5) is the number of (simulated) events going-through the spectrometer
acceptance and being reconstructed in bip J+ Lgim is the (simulated) luminosity that
Was necessary to generate this number of events, d°0theo(7) is the theoretical Cross
section that was used to generate the events; it is computed at one particular (and
arbitrary) point in phase space. The integral solid angle is the sum of the AQ(5)
over all bins j. It has a formal expression similar to eq.(1):

tot '
AQtot — Na (2)

Lymx < d Otheo =

where Nt is the total number of accepted events and < d®gyp., > is a cross section

integrated in the accepted phase space.

VCSSIM proposes 2 choices of theoretical cross section shape d°c(ep — epy) to
generate events:

1. comstant cross section in the whole phase space

2. [Bethe-Heitler + Born/ cross section.




¢ Difference between the two choices of cross section:

The first test we made is summarized in table 1. we moved beamz from 0 to +5
mm, asking for the same number of accepted events Nigh,. We did that for both

cross section choices.

cross section beamx Nt Leim (pb™") relative change in

choice (delta funct.) luminosity w.r.t.
the case beamz =0

1) d°c = constante 0 mm Ax10°| 215 x10°pb™t |  --------

1) d% = constante | +5mm | 4 X 104 | 2.18 x 105 pb™! | 28528 = 414 %

2) d°c = BH+B 0 mm 107 1459 x 108pb~t| --------

2) d°s = BH+B +5 mm 10¢ |425x108pb~t| BRE=-T4%

Table 1: Choices of cross section and first test on integral quantities.

One sees that the two choices of cross section do not lead to the same relative
change in Lgm. This is normal, because when one takes option 2) one adds the
effects due to cross section variation itself. Indeed the change in beamz induces a
change in the accepted range of horizontal angles in each arm!, and the (BH+B)
cross section varies with these polar angles 0., 0,. See figure 1.

S-
HR. E 7_Hall
HRS-H
0 axis
P
. "‘a
0 .
\P‘ Wyl 48
-— > o
beamx=+5mm beamx=0

Figure 1: View in horizontal plane (X,Z) of Hall A frame. Change in polar angle 6,
when horizontal beam position s changed by 5 mm.

langles measured w.r.t. the beam axis




The quantity AQ that we have defined may not be exactly a “solid angle” but more
a “geometrical efficiency”, as Luc calls it. So the use of a cross section or another
may lead to different solid angles. But their relative change with beamz should be
the same. -

¢ Our choice of cross section: based on the above considerations, we have
chosen to use option 1) = constant cross section in VCSSIM. First we are interested
in geometrical effects and not in cross section behaviour. Second, this option requires
much less computer time than the (BH+B) option, for the same number of accepted
events. '

2 Results on Integral solid angle

As we have chosen ¢ to be a constant, the ratio Nsim/ Lgim, is equal to a solid
angle AQ, up to a constant factor. In table 2 we also keep the number of accepted
events Nyt constant. So we have g very simple property: when we move beamaz,
the relative change observed on Lg;y, is directly equal to the relative change in solid
angle, with opposite sign. This is how the last colump of table 2 is computed. It

shows R== relative change in solid angle w.r.t. itg value at beamz = ().

dAQ AQ(beamnz) — AQ(0)

F= Xy AQ(0)
beamx Nt | Loim (0b71) | R(beama) < aatbeam-an()
(delta funct.) :

-5.0mm [ 4x10% [ 2174 x 105 ~0.0102 £ 0.0070
-2.5mm | 4x10% | 2.153 x 10° - =0.0005 + 0.0070.

0 mm 4 x10% | 2.152 x 105 0
+25mm | 4x 104 2.165 x 10° —0.0060 + 0.0070
+5.0 mm | 4x10% | 2.178 x 10° - —0.0121 % 0.0070

Table 2: Relative change in integral solid angle obtained with constant cross section,

Figure 2 displays the values of the last column as a function of beamz. The error
bar on R is statistical:

AN (e ANt (o 1/2 .
A% = [(Tv:;é,’f«%f%)%(wé)—))?] , with AN=VN.  (3)

Conclusion: effects are small. The integral solid angle does not change by more
than 1 % when beamx changes by as much as 5 mm.
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A0 / A function of beam x (mm)
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Figure 2: Relative change of integral solid angle versus beamz.
3 Results on Differential solid angle

We use the same samples of simulated events as in previous section, but now re-
constructed events are put in physics bins in cos 0.yom and ¢.,. Results per bin
are shown in figures 3 -7 in terms of the previously defined ratio R = 0AQ/AQ.
Each figure 3,4,5,6, corresponds to a different value of beamz (-5, -2.5, +2.5, 5 mm),
and particular physics bins have been selected. The statistical error bar on R is
computed as in eq.(3).

As expected, variations of solid angle are much more important locally in phase
space that when integrated over phase space. They can reach up to 10-40 % for
beamz = 5 mm, the highest values corresponding to events close to acceptance
edge.

Figure 7 shows another more or less expected féature, namely that locally in phase
space the solid angle varies linearly with beamz to first order. The slope of variation
changes sign from one physics bin to another, as shown in the figure. That explains
why the integral solid angle is not so sensitive to beam position variations.

4 Conclusions

1.

This set of plots (3-7) can serve as calibration curves of systematic error on solid
angle (and hence on experimental cross sections) due to beamz uncertainty.




2,

For an experimenta] Abeamnz = +0.5 mm due to BPM offsets uncertainty, we
expect to have an induced systematic error on d°0eqp that can reach a few percents
locally in phase space (~ 0-4 %). o '

3.

The variation of solid angle with vertical beam position bearny should be studied
as well. The procedure explained in this paper could be applied. Also, one should
probably extend the study to other VCS DA-settings. Finally, the variation of solid
angle with spectrometer mispointing could also be studied along the same lines
(always for coincidence events in VCS kinematics).

Many thanks to Luc Van Hoorebeke for discussions and critical inputs to this doc-
ument.
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Figure 3: Relative change in differential solid angle for beamz = -5.0 mm.
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Figure 4: Relative change in differential solid angle for beamz = -2.5 mm.
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Figure 6: Relative change in differential solid angle for beamz = +5.0 mm.
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