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1 Introduction

Recoil proton polarization experiments using the polarimeter at the focal plane
(FPP) of the High Resolution Spectrometer (HRS) in Hall A, require knowledge
of the spectrometer spin transport matrix, S, to reconstruct the proton polar-
ization at the target. To calculate the matrix S one has to use a spectrometer
model as an input to a transport code like COSY [1] or SNAKE. Therefore, it
is very important to estimate the model dependence of the calculations. The
results of the two experiments [2, 3] measuring the proton form-factor ratio
µGe/Gm using recoil polarization method, showed decrease of the ratio with
Q2 in contrast to the previous results using Rosenbluth separation. Besides
the many advantages of the polarization technique, the result depends on the
spectrometer model, and limits of this dependence must be established when
comparing the results of the two different methods.

Using the FPP one can measure two components of the proton spin at the
focal plane. In contrast, the particle trajectory is known with a good precision
before and after the spectrometer and corresponding spectrometer models have
been developed as a result of many optical studies. One possible way to investi-
gate the model dependence of the spin matrix calculations is to vary all possible
parameters of such models within limits established by the optical studies. The
main problem of such procedure is that the spin precession and the trajectory
are sensitive to different model parameters. Generally, the procedure is un-
ambiguous. One can achieve agreement with the the optical measurements by
varying different model parameters, but the result for the spin transport may
be different.

In this work in section 2 we, first, investigate the relation between the tra-
jectory and spin rotation as a particle propagates through a magnetic system.
The results of this investigation are applied to the field configuration in the
HRS in section 3, and particularly to the case of the proton form-factor ratio
experiments in section 4. When calculating the spin matrix, we will introduce
step-by-step several approximations and the results after each step will always
be compared with the full calculations done with the COSY code. Finally, also
in section 4, we describe a procedure for estimating the uncertainties of the spin
transport calculations, which is based on results of optical studies of the HRS.
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2 Velocity versus. spin propagation

In a magnetic system, the evolution of the the spin (�P ) and velocity (�v) are
described by the following equations:

d�P

dt
=

e

mγ
�P ×

[
g

2
�B‖ +

(
1 +

g − 2
2

γ

)
�B⊥

]
(1)

d�v

dt
=

e

mγ
�v × �B⊥ (2)

where �B‖ and �B⊥ are the field components, respectively, parallel and perpen-
dicular to the velocity, and g is the gyromagnetic ratio.

In the case �B‖ = 0, the above equations are identical up to a coefficient. If
the trajectory is planar, for any bending angle ∆θ, the spin rotates by an angle,
1 + γ(g

2 − 1) times bigger than ∆θ. The spin precession angle χθ, defined as
spin rotation with respect to the velocity is, therefore, equal to:

χθ = γ
(g

2
− 1

)
∆θ = f · ∆θ (3)

In this so called dipole approximation, by measuring the trajectory bending
angle, one can reconstruct the spin matrix which for such a simple magnetic
system, corresponds to a rotation in the trajectory plane. The amount and the
order of the intermediate rotations are not important since in the plane they are
additive, and therefore, no model is needed for the spin transport calculations.

In case of non-planar trajectory (but still �B‖ = 0) the rotations do not
commutate and one has to know all the intermediate trajectory rotations in
order to calculate the corresponding spin rotations. Let us assume that initially
the spin was parallel to the velocity. At a given point along the trajectory
specified by the path length s, the spin vector �P can be defined by the two angles
χθ and χφ (Fig. 1) in a local coordinate system in which the l axis is along the
velocity, n – in the dispersive direction, and t – in the non-dispersive direction.
The angle χθ represents spin precession in the dispersive plane, while χφ – the
angle between the spin �P and its projection on the n-l plane – represents spin
precession in the non-dispersive direction. Let us consider trajectory rotation
by small angles: dθ in the dispersive, and dφ in the non-dispersive direction,
respectively. Since rotations by small angles, even in space, are additive, we
can apply the dipole approximation in both directions. That means for the
above trajectory rotations correspond spin rotations at angles fdθ and fdφ in
the dispersive and non-dispersive plane, respectively. Then, the change of χθ

and χφ is given by:

dχθ = fdθ + sinχθ sinφsfdφ � fdθ (4)

dχφ = cos
(

arctg
tgχθ

cosφs

)
fdφ � cosχθfdφ (5)
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Figure 1: Spin precession in local coordinate system defined by the velocity
(l-axis), the n axis being along the dispersive direction, and t - along the non-
dispersive one.

where we have assumed that φs = fφ is small. In this small φs approximation
one can integrate Eqs. (4,5) and separate the precessions in the dispersive and
non-dispersive directions explicitly:

χθ(s) = f [θ(s) − θ(0)] (6)

χφ(s) =
∫ s

0

cosχθ(s)fdφ(s) =
∫ s

0

cos (f [θ(s) − θ(0)]) fdφ(s) (7)

which integrals can be calculated from the trajectory angles θ(s) and φ(s).
We define the matrix S as transformation of the spin from the target �P tg to

the focal plane �P fp of the spectrometer:

 P fp

n

P fp
t

P fp
l


 =


 Snn Snt Snl

Stn Stt Stl

Sln Slt Sll





 P tg

n

P tg
t

P tg
l


 (8)

From the precession angles definitions (Fig. 1) we obtain:

Snl = cosχφ sinχθ

Stl = sinχφ

Sll = cosχφ cosχθ (9)
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where:

χθ = f [θfp − θtg] (10)

χφ =
∫ sfp

0

cosχθ(s)fdφ(s) (11)

and the indexes fp and tg denote the corresponding quantity at the target and
at the focal plane, respectively.

Using exactly the same arguments, we calculate the matrix elements that
describe the rotation of the normal spin component:

Snn = cosχ′
φ cosχθ

Stn = − sinχ′
φ

Sln = − cosχ′
φ sinχθ (12)

where:

χ′
φ =

∫ sfp

0

sinχθ(s)fdφ(s) (13)

Finally, using the orthogonality we calculate the rotation of the transverse
spin component:

Snt = StlSln − SllStn = − sinχφ cosχ′
φ sinχθ + cosχφ sinχ′

φ cosχθ

Stt = −SlnSnl + SllSnn = cosχφ cosχ′
φ

Slt = SnlStn − SnnStl = − cosχφ sinχ′
φ sinχθ − sinχφ cosχ′

φ cosχθ

(14)

Note that in small φs approximation, the matrix S is orthogonal:

STS =


 1 0 − sinχφ sinχ′

φ

0 cos2 χ′
φ sin2 χφ + cos2 χφ 0

− sinχφ sinχ′
φ 0 1




because χφ < |φs| and χ′
φ < |φs|, as it follows from Eqs. (11,13).

Summarizing, the results in this section were derived (i) in small φs approxi-
mation and (ii) assuming that the longitudinal field component �B‖ with respect
to the particle trajectory, is zero. If only the second assumption (ii) were valid,
then the spin matrix still could be calculated from the particle trajectory angles
θ(s) and φ(s) without knowing the magnetic field and the absolute position of
the trajectory with respect to the optical axis. The first assumption (i) allows
us to calculate the matrix elements explicitly as integrals of θ(s) and φ(s).

3 Spin propagation in the HRSs

We will apply the results of the previous section to the magnetic field configu-
ration in the HRSs.

In Fig. 2, as an example, we demonstrate the approximation given by Eqs.
(9-14) calculated using COSY results for the trajectory angles θ(s) and φ(s)
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for a particular trajectory in HRS. We compare it with numerical calculations
assuming only that �B‖ = 0. In this calculations for each small enough step
along trajectory path length s, we rotate the spin at angles of fdθ and fdφ that
correspond to the trajectory rotations given by θ(s) and φ(s) as described in
the previous section. For comparison, in the same figure, the COSY results ( �B‖

not neglected) are shown, calculated also between the magnets.
By comparing the above approximations for different trajectories in HRS as

demonstrated in fig. 2 we conclude that the small φs approximation is very
reasonable. The deviations from the full COSY calculations are mainly due
to the assumption that �B‖ = 0. There are two sources of longitudinal field
component: the angle of the trajectory with respect to the optical axis to which
the main field inside the magnets is perpendicular, and the fringe field at the
entrance and exit of the magnets. The analysis show that due to the relatively
small angular acceptance the first source is negligible and the fringe fields are the
main reason for the deviations from the COSY calculations. The longitudinal
field component is most important in the dipole as demonstrated in more details
in the bottom panel of Fig. 3 for the Stl matrix element. One can see that
the disagreement between the plotted approximations and COSY calculations
originates from the dipole region.

The approximation given by Eqs. (9-14) still requires knowledge of the full
trajectory, and therefore – model of the spectrometer, since the angles θ(s) and
φ(s) enter in the integrals (11,13). If, however, we assume that these angles
change linearly in the dipole as shown in the two top panels of Fig. 3, the
integrals (11,13) can be approximated by the following expressions:

χφ =
∫ sfp

0

cosχθ(s)fdφ(s)

= f

(
(φd1 − φtg) + (φd2 − φd1)

sinχθ

χθ
+ (φfp − φd2)cosχθ

)
(15)

χ′
φ =

∫ sfp

0

sinχθ(s)fdφ(s)

= f

(
(φd2 − φd1)

1 − cosχθ

χθ
+ (φfp − φd2)sinχθ

)
(16)

where φd1, φd2 are the non-dispersive angles before and after the dipole. These
two angles can be calculated from the trajectory parameters at the target and
at the focal plane by modeling only the quadrupoles and excluding the dipole
which is the most delicate part of the HRS model. The results of the above
approximation (15,16) are demonstrated in the bottom panel of Fig. 3 and in
Fig. 2.
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Figure 2: Evolution of the spin matrix element along the trajectory path length
s calculated as follows: blue line – small φs and �B‖ = 0 approximation (9-14);
green line (plotted but almost indistinguishable from blue curves) – �B‖ = 0
approximation, numerical integration; red points – linear angle change approx-
imation (15,16); black points – full COSY calculations. For trajectory defined
by θtg = 30mrad, p = p0 = 2.05GeV/c, ytg = 0, φtg = 30mrad.
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Figure 3: Trajectory angles θ (top) and φ (middle) for θtg = 30mrad, p = p0 =
2.05GeV/c, ytg = 0, φtg = 30mrad; and Stl (bottom) calculated with COSY
(black), approximation (9-14) (blue), and approximation (15,16) (red) the later
corresponding to the assumption about angles θ(s) and φ(s) as shown with red
on the two top panels; all as functions of the trajectory path length s.
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4 Application to the proton form-factor ratio
measurements

In case of elastic �ep scattering in one photon exchange approximation, there is
no normal component of the proton polarization at the target, therefore for the
two polarization components that can be measured at the focal plane we obtain
from Eq. (8):

P fp
n = SntP

tg
t + SnlP

tg
l

P fp
t = SttP

tg
t + StlP

tg
l (17)

For the matrix elements in the above equations we use the approximation from
the previous section defined by Eqs. (9-14). In addition we neglect all the
terms containing χφ and χ′

φ of order two and higher as negligible in the small
φs approximation. Then, the solution of Eq. (17) is given by:

P tg
t = −χφP fp

n

sinχθ
+ P fp

t

P tg
l =

1
sinχθ

(
P fp

n + (χφsinχθ − χ′
φcosχθ)P

fp
t

)
(18)

In the Q2 region of 0.5− 5.6 GeV2 P tg
t is 3 − 10 times smaller than P tg

� . Since
χφ and χ′

φ are small, we can neglect (χφsinχθ − χ′
φcosχθ)P

fp
t in comparison

to P fp
n in the last equation. Then we rewrite the above set of equations in the

form:

P tg
t

P tg
l

=
P fp

t

P tg
l

− χφ (19)

P tg
l =

P fp
n

sinχθ
(20)

The elastic form factor ratio is proportional to the ratio of the polarization
components at the target [4]:

GEp

GMp
= −P tg

t

P tg
�

(E + E′)
2mp

tan(
θe

2
) (21)

and therefore, proportional to the right-hand side of Eq. (19). Here, E, E′ and
θe are the initial, final electron energy, and the scattering angle, respectively.
Thus, the form factor ratio is very sensitive to χφ, in contrast to sinχθ which
is multiplied by a small term P fp

t /P fp
n after substituting P tg

l from Eq. (20) in
Eq. (19). Eq. (19) also means that by measuring the polarization components
at the focal plane as functions of different trajectory parameters one can study
the dependence of χφ on these parameters, since the polarization components
at the target don’t depend on them. This is demonstrated bellow.
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green); in bins of qy (left panel) and qφ (right panel) and fitted with straight
lines.
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Equations (15, 16) can be rewritten in the form:

χφ = f [(φfpcosχθ − φtg)

+ φd(1 − cosχθ) − ∆φd(1 − 2sinχθ

χθ
+ cosχθ)] (22)

χ′
φ = f

[
φfpsinχθ − φdsinχθ + ∆φd

(
2(1 − cosχθ)

χθ
− sinχθ

)]
(23)

where φd = (φd2 + φd1)/2 is the mean angle in the dipole, and ∆φd = (φd2 −
φd1)/2 – half of the bend angle in the dipole in non-dispersive direction. Note
that in Eq. (22), in the region of χθ ∼ 1800 the φd term is dominant while the
∆φd one is negligible and vice versa in the region of χθ ∼ 3600. In first order
these angles depend only on the non-dispersive target coordinate and angle:

φd = (φd|ytg)ytg + (φd|φtg)φtg (24)
∆φd = (∆φd|ytg)ytg + (∆φd|φtg)φtg (25)

To calculate the above couplings we take the derivative of Eq. (19) in which χφ

is replaced by Eq. (22), with respect to the following quantities:

qy = ytg(1 − cosχθ)f
qφ = φtg(1 − cosχθ)f

(26)

and since P tg
l and P tg

t do not depend on them we obtain:

(φd|ytg) =
1

P tg
l

∂P fp
t

∂qy
− ∂

∂qy
f(φfpcosχθ − φtg) − (φd|φtg)

∂qφ

∂qy

+
∂

∂qy
f∆φd(1 − 2sinχθ

χθ
+ cosχθ)

(φd|φtg) =
1

P tg
l

∂P fp
t

∂qφ
− ∂

∂qφ
f(φfpcosχθ − φtg) − (φd|ytg)

∂qy

∂qφ

+
∂

∂qφ
f∆φd(1 − 2sinχθ

χθ
+ cosχθ) (27)

To estimate the couplings (φd|ytg) and (φd|φtg), we use the experimental
data for Q2 = 2.13GeV 2. In Fig.4 we plot P fp

t /P tg
l and the mean values of

f(φfpcosχθ −φtg), qy and qφ in bins of qy and qφ. Note that all these quantities
are reconstructed from the experimental data without using any spectrometer
model, in particular P tg

l is calculated from Eq. (20). One can see (green crosses
in Fig.4) that in the above equations, the contributions of the terms contain-
ing ∂qφ/∂qy and ∂qy/∂qφ are small. In the same way it can be demonstrated
that the last terms in the above two equations are negligible. This is true in
a wide region around χθ ∼ 1800 (Q2 = 2.13GeV 2). Therefore, the above cou-
plings are calculated by fitting the slopes of P fp

t /P tg
l and f(φfpcosχθ−φtg) and

subtracting them.

10



For comparison, in Fig.4 we also show Stl calculated with COSY. According
to Eq. (19) the slope of P fp

t /P tg
l as reconstructed from the experimental data,

and the slope of the matrix element Stl ≈ χφ must be similar, so that the
ratio of the polarization components at the target do not depend on qy and
qφ. Essentially, this property is used in the above procedure to calculate the
couplings (φd|ytg) and (φd|φtg). The results we obtain, (φd|ytg) = −0.317±0.038
and (φd|φtg) = −0.066 ± 0.082, are similar to the couplings calculated with
COSY: (φd|ytg) = −0.368 and (φd|φtg) = −0.152.

Similarly, working in the region of χθ ∼ 3600 (Q2 = 5.6GeV 2) and plotting
the same quantities in bins of

q′y = −ytg(1 − 2sinχθ

χθ
+ cosχθ)f

q′φ = −φtg(1 − 2sinχθ

χθ
+ cosχθ)f

we reconstruct the other two couplings: (∆φd|ytg) = 0.218±0.105 and (∆φd|φtg) =
−0.287± 0.111. These couplings are important only in the region of χθ ∼ 3600

where the term in Eq. (22) containing ∆φd is not negligible.
Having the above couplings reconstructed, we are ready to use the spin

matrix approximation given by Eqs. (9,12,14) in which the precession angles
are calculated from Eq. (10) and Eqs. (22,23). All these equations depend only
on the dispersive and non-dispersive bend angles in the spectrometer (θfp−θtg)
and (φfp − φtg) and on the proton γ-factor, except for the angles φd and ∆φd,
calculated from Eqs. (24,25) using the reconstructed couplings.

In figures 5, 6, 7, and 8 the results of this approximation are compared event-
by-event with the COSY calculations for the data from the proton form-factor
experiments E93-027 and E99-007. One can see that the agreement is fairly
good over the whole range of χθ from 900 to 3900. It can be demonstrated that
the precession angle χφ is always smaller than χ′

φ and the Eqs. (14) can be
simplified by neglecting the terms containing sinχ′

φ, in which case the results
are very similar to those shown at figures 5, 6, 7, and 8.

By means of this approximation we can formulate a prescription for estimat-
ing the systematic errors of physical quantities that depend on the spin matrix
elements. We separate the systematic errors into two types: (i) the ones coming
from the uncertainties using the above approximation, and (ii) the errors on the
corrections to that approximation. To estimate the first contribution, one varies
all the experimental quantities that enter in the above approximation:

• the bend angles θfp − θtg and φfp −φtg, and the momentum p, within the
limits estimated from the optical studies of the HRS

• the reconstructed couplings (φd|ytg), (φd|φtg), (∆φd|ytg), and (∆φd|φtg),
within the errors stated above

and calculates the corresponding error on the physical quantity. To reduce the
systematic errors one has to minimize the uncertainties in the above quantities.
In case of the µGe/Gm data, it turns out that the form factor ratio is especially
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Figure 5: Spin matrix elements calculated with COSY (black) and approxima-
tion given by Eqs. (9,12,14) in which the precession angles are calculated from
Eqs.(10,22,23) using the reconstructed coupling constants (red); as functions of
the precession angles χθ and χφ for central proton momentum of 0.76 GeV/c
(Q2 = 0.49 GeV2).
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Figure 6: Same as Fig. 4 for central proton momentum of 1.87 GeV/c (Q2 =
2.13 GeV2).
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Figure 7: Same as Fig. 4 for central proton momentum of 2.92 GeV/c (Q2 = 4.0
GeV2).
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Figure 8: Same as Fig. 4 for central proton momentum of 3.81 GeV/c (Q2 = 5.6
GeV2).
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sensitive to the non-dispersive bend angle φfp − φtg. In devoted optical studies
[5] we achieved 0.3 mrad precision for the non-dispersive bend angle of the
central trajectory. As for the dispersive bend angle, such a good precision is
not needed. Plotting the P fp

n polarization component in bins of the dispersive
precession angle χθ and measuring the zero crossing points at χθ ∼ 1800 and
χθ ∼ 3600, from Eq. (10) we reconstructed the absolute value of the dispersive
bend angle with a precision of 3 mrad for the right HRS and 4.4 mrad for the
left HRS.

The second contribution to the systematics can be estimated by comparing
the calculations done with the above approximation and with the COSY model.
By varying different focal plane and target quantities, and model parameters
the results from both calculations change because effectively we change the
quantities listed in the previous paragraph, however the change of the difference
between the two calculations (i.e. the change of the correction to the spin matrix
approximation) gives us the second contribution to the systematic errors. In
case of the µGe/Gm data, the spin matrix approximation and the full COSY
calculations give very similar results. The variation of the difference between
the two calculations is even smaller and negligible as compared with the first
type of systematic errors.

5 Conclusions

The HRS spin matrix is in good approximation a function mainly of the momen-
tum p, and the total trajectory bending angles in dispersive and non-dispersive
directions: θfp−θtg, φfp−φtg. While, the momentum is known with sufficiently
high precision, special measurements are required to achieve good precision for
the total bending angles. The bending of the trajectory in the non-dispersive
direction from the target to the dipole and within the dipole, on which the spin
matrix depends as well, don’t need to be known with high precision and can
be reconstructed from elastic �ep− > e�p measurements. The approximation will
not work for spectrometers with strong fringe field effects, where these effects
are the main reason for the deviation of this approximation from the COSY
calculations.
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