Measurement of Lepton-Lepton Electroweak Reaction MOLLER

Physics Motivation & Experimental Strategy

Krishna Kumar

University of Massachusetts, Amherst

January 14, 2010

Director's Review, Jefferson Laboratory

January 14, 2010

Outline

- Global Physics Context
- MOLLER Goal and Physics Impact
- Experimental Technique
 - High flux parity experiments
 - MOLLER Design Choices
 - Technical Challenges/Requirements
 - Statistical and Systematic Errors

Worldwide Experimental Thrust in
the 2010s: New Physics SearchesCompelling arguments for "New Dynamics" at the TeV ScaleA comprehensive search for clues requires:Large Hadron Collideras well asLower Energy: Q2 << M_Z2Nuclear/Atomic systems address several topics; complement the LHC:

- Neutrino mass and mixing $0\nu\beta\beta$ decay, θ_{13} , β decay, long baseline neutrino expts
- Rare or Forbidden Processes EDMs, charged LFV, $0v\beta\beta$ decay
- Dark Matter Searches
- Low Energy Precision Electroweak Measurements:

Complementary signatures to augment LHC new physics signals

- Neutrons: Lifetime, Asymmetries (LANSCE, NIST, SNS...)
- **Muons:** Lifetime, Michel parameters, g-2 (BNL, PSI, TRIUMF, FNAL, J-PARC...)
- Parity-Violating Electron Scattering Low energy weak neutral current couplings, precision weak mixing angle (SLAC, JLab)

January 14, 2010

Comprehensive Search for New Neutral Current Interactions

Important component of indirect signatures of "new physics"

Many new physics models give rise to non-zero Λ 's at the TeV scale: Heavy Z's, compositeness, extra dimensions...

One goal of neutral current measurements at low energy AND colliders: Access $\Lambda > 10$ TeV for as many f_1f_2 and L,R combinations as possible

LEPII, Tevatron access scales Λ 's ~ 10 TeV

e.g. Tevatron dilepton spectra, fermion pair production at LEPII

- L,R combinations accessed are parity-conserving

LEPI, SLC, LEPII & HERA accessed some parity-violating combinations but precision dominated by Z resonance measurements: ~ few TeV sensitivity January 14, 2010 Physics Motivation & Experimental Strategy

Colliders vs Low Q²

Consider known weak neutral current interactions mediated by Z Bosons

$$\frac{\delta A_{Z}}{A_{Z}} \propto \frac{\pi/\Lambda^{2}}{g G_{F}} \longrightarrow \qquad \delta(g)/g \sim 0.1 \\ \Lambda \sim 10 \ TeV \qquad \qquad \frac{\delta(sin^{2} \theta_{W})}{sin^{2} \theta_{W}} \leq 0.01$$

Window of opportunity for weak neutral current measurements at $Q^2 << M_Z^2$

Processes with potential sensitivity:

- neutrino-nucleon deep inelastic scattering NuTeV at Fermilab
- Atomic parity violation (APV) ¹³³Cs at Boulder
- parity-violating electron scattering

January 14, 2010

- Semi-leptonic: APV (e-q) (atomic theory) & NuTeV (ν -q) (hadronic physics)
- Important, complementary limits on new contact interactions
- Future measurements search for new contact interactions
 - Qweak (e-q), PVDIS (e-q) and MOLLER (e-e)
 - e-q measurements will further expand contact interaction reach
 - MOLLER, in addition, could potentially impact the central value of the sin² heta w and its

implications for m_H

January 14, 2010

EW Physics at One-Loop

Three fundamental inputs needed: α_{em} , G_F and M_Z Other experimental observables predicted at 0.1% level: sensitive to heavy particles via higher order quantum corrections 4th and 5th best measured parameters: $sin^2\theta_W$ and M_W

January 14, 2010

January 14, 2010

Physics Motivation & Experimental Strategy

January 14, 2010

Physics Motivation & Experimental Strategy

The moment one adds "new physics" (e.g. LHC anomaly), sin²θ_W becomes processdependent (initial and final state fermion type), and Q^2 dependent

Proposed A_{PV} measures purely the e-Z couplings at a different energy scale

Three fundamental inputs needed: α_{em}, G_F and M_Z Other experimental observables predicted at 0.1% level: sensitive to heavy particles via higher order quantum corrections 4th and 5th best measured parameters: $sin^2\theta_W$ and M_W $A_{FB}(b)$ measures product of e- and b-Z couplings

 $A_{LR}(had)$ measures purely the e-Z couplings

Contact Interaction Reach

If new contact interactions are to be folded in with the Standard Model processes, disentangling them requires several measurements of different processes off the Z resonance

Best current limits on 4-electron contact interactions: LEPII at 200 GeV
(Average of all 4 LEP experiments) Λ (Average of all 4 LEP experiments) $\sqrt{|\mathbf{g}_{RR}^2 + \mathbf{g}_{LL}^2|} = 4.4 \text{ TeV}$ OR $\frac{\Lambda}{\mathbf{g}_{RL}} = 5.2 \text{ TeV}$ insensitive to $|\mathbf{g}_{RR}^2 - \mathbf{g}_{LL}^2|$ insensitive to $|\mathbf{g}_{RR}^2 - \mathbf{g}_{LL}^2|$ Compositeness scale: $\sqrt{|\mathbf{g}_{RR}^2 - \mathbf{g}_{LL}^2|} = 2\pi$

Length scale probed:
$$4 \times 10^{-21}$$
 m

January 14, 2010

SUSY Sensitivity

Does Supersymmetry provide a candidate for dark matter? •B and/or L need not be conserved (RPV): neutralino decay

•neutralino then unlikely to be a dark matter candidate

•neutrinos are Majorana

January 14, 2010

January 14, 2010

Physics Motivation & Experimental Strategy

Experimental Technique: Technical Improvements over 3 Decades

Parity-violating electron scattering has become a precision tool

Optical Pumping

•Optical pumping of a GaAs wafer

•Rapid helicity reversal: change sign of longitudinal polarization ~ kHz to minimize drifts (like a lockin amplifier)

•Control helicity-correlated beam motion: under sign flip, keep beam stable at the submicron level

Example: at 240 Hz reversal

 \diamond Beam helicity is chosen pseudo-randomly at multiple of 60 Hz

• sequence of "window multiplets"

Choose 2 pairs pseudo-randomly, force complementary two pairs to follow

Analyze each "macropulse" of 8 windows together

MOLLER will plan to use ~ 2 kHz reversal; subtleties in details of timing

Noise characteristics have been unimportant in past experiments: Not so for PREX, Qweak and MOLLER....

January 14, 2010

Flux Integration

"Flux Integration": very high rates

direct scattered flux to background-free region

Detector D, Current I: F = D/I

$$\mathbf{A}_{\text{pair}} = \frac{\Delta \mathbf{I}}{2\mathbf{F}} + \Delta \mathbf{A}$$

order: x, y, θ_x , θ_y , E

II order: e.g. spot-size

After corrections, variance of A_{pair} must get as close to counting statistics as possible: ~ 80 ppm (2kHz) & central value reflects A_{phys}

Experimental Challenge & Systematic Control *Talks by M. Pitt and G. Cates*

• Must minimize both random and helicity-correlated fluctuations in the integrated window-pair monitor response of electron beam trajectory, energy and spot-size.

January 14, 2010

E158 Experience relevant for apparatus design as well as systematic control

SLAC E158 Result

Phys. Rev. Lett. **95** 081601 (2005)

January 14, 2010

Physics Motivation & Experimental Strategy

Old SPEAR Final focus tunnel North arc North End Station B injection End of Main contro klystron tunnel South arc adlery **BSY** main access South injection tunnel Accelerator housing

Parity Violation at JLab

MOLLER Hall Layout

Target: Liquid Hydrogen

- Most thickness for least radiative losses
- No nuclear scattering background
- Not easy to polarize

Need as much target thickness as technically feasible
Tradeoff between statistics and systematics
Default: Same geometry as E158

Spectrometer Collimation

Learn from E158 experience

- One-Bounce Photons
- Power Dissipation
- Precision Alignment
- Radiation Protection

Simulations Initial and final state radiation effects in target

- Integrating Detectors: talk by D. Mack
 - Moller and e-p Electrons:
 - radial and azimuthal segmentation
 - quartz with air lightguides & PMTs
 - pions and muons:
 - quartz sandwich behind shielding
 - luminosity monitors

January 14, 2010

- Other Detectors talk by D. Armstrong - Tracking detectors
 - 3 planes of GEMs/Straws
 - Critical for systematics/ calibration/debugging
 - Integrating Scanners
 - quick checks on stability

Signal & Backgrounds

parameter	value
cross-section	45.1 μBarn
Rate @ 75 μA	135 GHz
pair stat. width (1 kHz)	82.9 ppm
δ(A _{raw}) (6448 hrs)	0.544 ppb
δ(A _{stat})/A (80% pol.)	2.1%
δ(sin ² θ _w) _{stat}	0.00026

Backgrounds: talk by P. Souder

- photons and neutrons
- mostly 2-bounce collimation system
- dedicated runs to measure "blinded" response
- pions and muons
- real and virtual photo-production and DIS
- prepare for continuous parasitic measurement
- estimate 0.5 ppm asymmetry @ 0.1% dilution variation of January 14, 2010 Physics Motivation & Experimental Strategy

- Statistical Error
- 83 ppm @ 75 μ A
- table assumes 80% Pe and no degradation of statistics from other noise sources
- realistic goal ~ 90 ppm
- potential for recovering running time with higher Pe, higher efficiency, better spectrometer focus....

• Elastic e-p scattering

- well-understood and testable with data
- 8% dilution, 7.5±0.4% correction
- Inelastic e-p scattering
 - sub-1% dilution
 - large EW coupling, 4±0.4% correction
 - variation of Apv with r and ϕ

24

Technical Challenges

• ~ 150 GHz scattered electron rate

- Design to flip Pockels cell ~ 2 kHz
- 80 ppm pulse-to-pulse statistical fluctuations
 - Electronic noise and density fluctuations < 10⁻⁵
 - Pulse-to-pulse beam jitter ~ 10s of microns at 1 kHz
 - Pulse-to-pulse beam monitoring resolution ~ 10 ppm and few microns at 1 kHz

• 1 nm control of beam centroid on target

- Modest improvement on control of polarized source laser transport elements
- Improved methods of "slow helicity reversal"

> 10 gm/cm² target needed to achieve desired luminosity

– 1.5 meter Liquid Hydrogen target: ~ 5 kW @ 85 μ A

Full Azimuthal acceptance with θ_{lab} ~ 5 mrad

- novel two-toroid spectrometer
- radiation hard, highly segmented integrating detectors

Robust and Redundant 0.4% beam polarimetry

- Plan to pursue both Compton and Atomic Hydrogen techniques

Systematics Overview

source of error	% error
absolute value of Q ²	0.5
beam second order	0.4
longitudinal beam polarization	0.4
inelastic e-p scattering	0.4
elastic e-p scattering	0.3
beam first order	0.3
pions and muons	0.3
transverse polarization	0.2
photons and neutrons	0.1
Total	1.0

G. Cates and M. Pitt

- I order beam helicity correlations
- position to 0.5 nm, angle to 0.05 nrad
- active intensity, position and angle feedback
- II order beam helicity correlations
- control laser spotsize fluctuations to 10⁻⁴
- slow flips with Wien filter and g-2 energy flip January 14, 2010 Physics Motivation &

Iongitudinal beam polarization E. Chudakov and K. Paschke

- Goal: redundant, continuous monitoring with Compton & Atomic Hydrogen Moller
- Redundancy backup plan: High field Moller

• transverse beam polarization K. Paschke & Y. Kolomensky

- kinematic separation allows online monitoring
- slow feedback using Wien filter
- Absolute value of Q² D. Armstrong
- dedicated tracking and scanning detectors
- experience with HAPPEXII & Qweak

Motivation Summary

Projected Result from an A_{PV} measurement in Møller Scattering

 $A_{PV} = 35.6 \ ppb$ $\delta(A_{PV}) = 0.73 \ ppb$ $\delta(Q^e_W) = \pm 2.1 \ (stat.) \pm 1.0 \ (syst.) \%$

 $\delta(\sin^2 \theta_W) = \pm 0.00026 \ (stat.) \pm 0.00012 \ (syst.) \quad \square > ~ ~ 0.1\%$

- Opportunity with high visibility and large potential payoff
 - The weak mixing angle is a fundamental parameter of EW physics
 - A cost-effective project has been elusive until now
 - expensive ideas reach perhaps 0.2% (reactor or accelerator v's, LHC Z production...)
 - sub-0.1% requires a new machine (e.g. Z- or v-factory, linear collider....)
 - physics impact on nuclear physics, particle physics and cosmology
 - pin down parameter for other precision low energy measurements
 - help decipher potential LHC anomalies at the TeV scale
 - shed light on feasibility of SUSY dark matter via search for R-Parity violation
- NSAC Long Range Plan strongly endorsed the physics
 - part of fundamental symmetries initiative to tune of 25M\$

• 11 GeV JLab beam is a unique instrument that makes this feasible

January 14, 2010

Aggressive physics goal

- conservative design choices
- reasonable extrapolations on existing/planned III generation technologies
- Strong, committed collaboration
 - Experience from E158, GO, HAPPEX
 - Major roles in Qweak & PREX (the best kind of MOLLER R&D!)
- No engineering yet
 - Spectrometer design is the heart of the apparatus
 - launching coherent plan with dedicated physicist/engineering manpower (absent in 2009)
- Cost range: 12-16 M\$
 - Very generous on engineering/design manpower and contingency
 - far from WBS but much better than canonical x2 underestimate
- Begun process of devising a coherent R&D Plan
 - Assuming green light, launch parallel effort to CDO process in 2010

January 14, 2010