

SIDIS Cherenkov Detectors

Haiyan Gao, Gary Swift, Simona Malace (Duke U.) Zein-Eddine Meziani, Eric Fuchey (Temple U.)

SoLID Collaboration Meeting, October 14-15 2011, JLab

Outline

→ Requirements: 2 Cherenkov detectors for positive identification of electrons and pions

 \rightarrow Design

- \rightarrow Mirrors
- \rightarrow Photon detector options: GEMs + CsI , PMTs
- \rightarrow Detectors performance

→ The electron Cherenkov: collection efficiency and signal
 → The pion Cherenkov: work in progress

Requirements

Threshold Cherenkov:

electron-pion separation pion-kaon/proton separation

SIDIS electron Cherenkov: 1.5 – 4.5 GeV

- positive identification of electrons
- don't care about performance below 1.5 GeV
- CO_2 , CF_4 would work as radiator
- gas length available: ~ 2 m (kinematics dependent)

SIDIS pion Cherenkov: 2.5 – 7.5 GeV

- positive identification of pions
- C_4F_8O at 1.5 atm would work as radiator
- gas length available: ~ 0.9 m (kinematics dependent)

 \Rightarrow 2 π coverage (SIDIS)

→ Perform in non-negligible magnetic field environment

Simple design: cost effective, easy to install, operate

Optics: Spherical Mirrors

Purpose: focus on small size photon detectors + ensure good 2π coverage

<u>How we "make" them</u>: using the "small spread around the central ray" approximation

Input: x_i (central ray) and x_r (the photon detector coordinates)

Output: radius of sphere (mirror curvature) and position of its center

 $x_i =$ incidentray on mirror

 x_r = reflected ray

 θ = anglebetweenincidentray

and normal to the mirror

The mirror size is defined by the polar angular acceptance that needs to be covered and number of sectors (30)*

R

Cone section with size defined by the min and max polar angles intersects sphere of radius R to cut out one of the 30 spherical mirrors

 $\cos\theta(\frac{1}{x_i} + \frac{1}{x_r})$

*SIDIS doesn't need sectoring but PVDIS does

Photon Detectors

GEMs + Csl (used by PHENIX)

→ Insensitive to magnetic field
 → Csl: sensitive to deep UV light,
 high quantum efficiency (up to
 60-70% at 110 nm)

Pure gas transparent We need: to UV light

Mirrors with good reflectivity in deep UV

PMTs

 \rightarrow Sensitive to magnetic field

Photocathodes typically sensitive to visible light mostly

Resistant in SoLID

---> We need PMTs:-

magnetic field

Suitable for tilling

Other: we 'll keep looking

The Electron Cherenkov (PMTs): Design

\Rightarrow Radiator: CO₂

- Mirror: 30 spherical mirrors in 2 parts each* → 2 rings of mirrors: inner and outer
- ➡ Photon detector: now 4 2" H8500C-03 per sector in 2 by 2 arrays

➡ Winston cones

- *mirror splitting for manufacturing & coating purposes (see Eric's talk)
 - → benefit: make each part of different curvature; went from 9 to 4 PMTs per sector (saves cost: 1 PMT = \$3000)

→ "exciting opportunity": make them of light and rigid material to remove the need for double edge support

→No impact on physics phase space

Cherenkov Mirrors: Material & Support

Mirrors: light & rigid material so no double-edge support would be needed

Options: glass-coated beryllium technology & carbon fiber technology

Both extensively studied/tested at CERN for the RICH LHCb (the carbon fiber was chosen: delivery time and cost)

Cherenkov Mirrors: Material & Support

Mirrors: glass-coated beryllium

Nuclear Instruments and Methods in Physics Research A 595 (2008) 197–199

Advantages: radiation hard, fluorocarbon compatibility, non-magnetic, light-weight, good rigidity

→Without glass (+ AI) coating, poor reflectivity in visible and UV: 50%; with glass (+ AI) coating: 90% for λ > 200 nm

LHCb prototype (made in Russia): central point support on the beryllium rim (single bolt) \rightarrow maximum deflection of the mirror due to gravity = 160µm

Disadvantages: high manufacturing costs + high toxicity (requires special safety measures during manufacturing and mandling)

Prototype for LHCb

0.4 m x 0.6 m R = 2.7 m

3 mm beryllium 0.5 mm glass

20 mm thick beryllium rim at one edge to support it

Cherenkov Mirrors: Material & Support

Mirrors: carbon fiber reinforced polymer (CFRP)

70% carbon-fiber (reinforcement material) + 30% resin (binds the fibers together)

Nuclear Instruments and Methods in Physics Research A 593 (2008) 624–637

Advantages: same as glass-coated beryllium + considerably cheaper, with no safety implications

LHCb mirrors (made by CMA, US):

→ sandwich honeycomb structure: two outer CFRP layers (1.5 mm) + core cells in-between as reinforcement

→ reflectivity with AI + MgF₂ coating: ~90% for λ > 200 nm

May be a good choice for SoLID Cherenkovs

We need to:

 \rightarrow Find best way of supporting CFRP mirrors (Gary)

→ Ask CMA (for example) for a quote
→ get good reflectivity below 200 nm as well

The Electron Cherenkov (PMTs): Focusing

The Electron Cherenkov (PMTs): Signal

Estimates include:

→ wavelength dependent corrections
 (Q.E. of H8500C-03 + mirror/Winston cone reflectivity)
 → effect of PMT window (Eric implemented that)

H8500C-03 in SoLID Magnetic Field

From H8500C field tests at Temple U.

- \rightarrow at 20 G (longitudinal field): < 10% signal loss
- \rightarrow at 70 G: 30%

Request sent to Amuneal for "ideal" shield which will incorporate the Winston cones

- <u>longitudinal</u> component of the magnetic field from 150 G to < 20 G
- transverse component of the magnetic field from 70 G to 0 G

Estimates based on BaBar v4 field map

Ideal could be higher though (< 50 G)

Amuneal: \rightarrow possible with a 2 layer shield \rightarrow outer: 1008 carbon steel 1/8"

 \rightarrow inner: Amumetal 0.04" \rightarrow mylar in between 0.062"

 $2 \rightarrow$ Winston cone substantially more expensive than straight cone (\$1350 per cone)

Need to check with simulation if we could use straight cones

Sector States And Sector States And Sector States States A Sector States A

Background on PMT window of concern

→ sum over all anodes would be fine but we could also take advantage of the pixeling and use coincidence between pixels to "cut" background

→ would like to test this approach $during g_2^p$

Place the PMT in a dark box with some shielding somewhere between 29 and 45 deg

S The Electron Cherenkov (GEMs+CsI): Design

- Very similar configuration possible for SIDIS and PVDIS
- same tank except for additional piece for SIDIS
- same mirrors, mounted at the same location
- same GEMs + CsI, mounted at different locations
- same gas: CF₄

23 cm X 27 cm (PHENIX size)

The Electron Cherenkov (GEMs+CsI): Signal

SThe Electron Cherenkov (GEMs+CsI): CsI Q.E.

The Electron Cherenkov (GEMs+CsI): Mirror Reflectivity in far UV

Mirrors Reflectivity in far UV

Measured reflectance of an Al + MgF₂ mirror from 300 Å to 1600 Å. The MgF_2 thickness is 250 Å.

Depends on incidence and thickness of protective layer

Measured reflectance of an Al + LiF mirror from 300 Å to 1600 Å. The LiF thickness is 250 Å.

The Pion Cherenkov (PMTs): Design

Similar design as for electron Cherenkov, the PMT option \cdot gas: C₄F₈O

 → Before we knew we have to split the mirrors: very good collection efficiency with one mirror and 9 2"
 PMTs per sector

The Pion Cherenkov (PMTs): Design

Similar design as for electron Cherenkov, the PMT option

• gas: C_4F_8O

→ We split the mirrors (different curvature) + went to 4 PMTs per sector

Simulation and design: iterate!

- \rightarrow "finalize" the Cherenkovs design
- \rightarrow switch to CLEO when available and re-optimize
- \rightarrow migrate to GEMC
- $\rightarrow \dots$

<u>Tests:</u>

 \rightarrow test H8500C-03 during g₂^p

→ test GEMs + CsI prototype during g_2^p : see next talk for details → ...

