

ALICE-EMCal

An EMCal for ALICE at the LHC for Jet Physics in PbPb collisions in the range of $P_T = 20$ GeV/c to 300 GeV/c and high P_T electrons and photons

Delivered on Schedule and <u>significantly</u> under budget

Expanded scope at constant TPC

An "off-the-shelf" option for S-PHENIX ??

EMCal Parameters

TABLE I: EMCal module physical parameters. Here, RL stands for Radiation Length and MR for the Moliere Radius.

Parameter	Value
Tower Size (at $\eta=0$)	$\sim 6.0 \times \sim 6.0 \times 24.6 \text{ cm}^3$
Tower Size	$\Delta\phi \times \Delta\eta = 0.0143 \times 0.0143$
Sampling Ratio	1.44 mm Pb / 1.76 mm Scint.
Layers	77
Scintillator	Polystyrene (BASF143E +
	1.5% pTP + 0.04% POPOP
Absorber	Pb (natural, standard mill spec.)
Effective RL X_o	12.3 mm
Effective MR R_M	3.20 cm
Effective Density	5.68 g/cm^3
Sampling Fraction	10.5
Radiation Length	20.1

Quantity	Value
Tower Size (at $\eta=0$)	$\sim 6.0 \times \sim 6.0 \times 24.6 \text{ cm}^3$ (active)
Tower Size	$\Delta \phi \ge \Delta \eta = 0.0143 \ge 0.0143$
Sampling Ratio	1.44 mm Pb / 1.76 mm Scintillator
Number of Layers	77
Effective Radiation Length X _o	12.3 mm
Effective Moliere Radius R_M	3.20 cm
Effective Density	5.68 g/cm ³
Sampling Fraction	10.5
Number of Radiation Lengths	20.1
Number of Towers	12,672
Number of Modules	3168
Number of Super Modules	10 full size, 2 half size
Weight of Super Module	\sim 7.7 metric tons (full size)
Total Coverage	$\Delta \phi = 110^{o}, -0.7 < \eta < 0.7$

The EMCal Physical Parameters.

EMCal WLS Fiber properties

Quantity	Value
WLS fiber	Y-11 (200) M-DC
Manufacturer	Kuraray
WLS Fluor	K27 200 mg
Absorbtion Peak	430 nm
Emission Peak	476 nm
Decay Time	7 ns
Core material	PS
Refractive Index	1.59
Inner Cladding	PMMA
Refractive Index	1.49
Outer Cladding	FP
Refractive Index	1.42
Long fiber Attenuation Length	3.5 m
fiber Diameter	1.0 mm

Table 4.3: Characteristics of the selected wavelength shifting fibers.

WOAK RIDGE NATIONAL LABORATORY

Detector Concept

Module details: Stable in any orientation for any feasible temperature excursions

Module Mechanical Design incorporates non-linear springs for stability against thermal excursions

- During calorimeter life time, Pb flattening and creeping will "shorten" the module and this will lead to a loss of compression load : Non-linear
- _ Belleville washers are used to keep most of compression load
 - Belleville washers is a non linear spring system, where variation of load is smaller than given by a pure spring (F = kX).

Parallel assembly

Serial assembly

Mixed assembly

module in cantilever position

Deflection (0.001") vs time (days)

Strong-back : Bottom view

Strip Module - 48 Towers 6cm x 6cm

Strong-back : F.E.A. Simulations

Deflection at 12:00 o'clock location: 0.3 mm with Ends clamped

Max stress 25 Mpa at 12:00 o'clock location

OAK RIDGE NATIONAL LABORATORY

Super Module Crate

Two Point Support for 100 Tons of Calorimeter Drives the Integration Concept

OAK RIDGE NATIONAL LABORATORY

ALICE - EMCal Support Structure

ALICE – EMCal: Individual Super Modules with Sufficient Cracks To Accommodate Substantial Support Structure Deformations

Super Module "Cracks"

Cracks in STAR EMC

Oak Ridge National Laboratory

CAK RIDGE NATIONAL LABORATORY

36 WLS Fibers - custom lengths with mirror and optical interface

CAK RIDGE NATIONAL LABORATORY

Fiber Mirror – 150 fibers at a time

*****Oak Ridge National Laboratory

WLS Fiber mirror quality

400

300

0

5

10

15

20

25

30

35

length (cm)

40

96.48

41.13

226.5

0.7552

0.8961

0.1177

Fiber Mirror Effect

EMCal works to design specifications

OAK RIDGE NATIONAL LABORATORY

Technical progress since CD-1 Prototype Detectors

OAK RIDGE NATIONAL LABORATORY

Strip Module Electronic and LED Integration

Fibers routed through 1mm diameter AI tube which has the same shape for all modules

LED calibration light delivered to all 4 towers of a single module via a single 0.5mm diameter optical Fiber

OAK RIDGE NATIONAL LABORATORY

	(, - , ,
Active Area	$5 \times 5 \text{ mm}^2$
Capacitance	90 pF
Wavelength min.	$\sim 320 \text{ nm}$
Wavelength max.	$\sim 1000 \text{ nm}$
Peak wavelength	600 nm
Quantum efficiency	$\sim 80\%$ at 476 nm
$1/M \times dM/dT (M=50)$	$\sim 2.2\%$
$1/M \times dM/dV (M=50)$	$\sim 3.3\%$

Table 4.4: Characteristics of the S8664-55 (S18148) Avalanche PhotoDiode.

Figure 4.32: The Avalanche PhotoDiode (left) mounted on the back of the Charge Sensitive Preamplifer (right) used by PHOS and EMCal.

Light Guide Couples Fiber Bundle to APD

LED Gain stabilization

Strip Module Temperature

LED signal viewed by APD

Temperature Corrected LED signal

Detector Assembly Methods and Tools

CAK RIDGE NATIONAL LABORATORY

Module Stacking

Fixture Includes reference points for dimensional QA/QC

Oak Ridge National Laboratory

Assembled Module under compression for 48 hours

Detector Production

8 Module Assembly Stations available at Wayne State as well as all other tooling: machine tools, laser welder, ...

CAK RIDGE NATIONAL LABORATORY

Following compression load for additional 48 hours

One Module showing fiber geometry at APD coupling

What physics actually drives EMCal design?

Direct photons by pi-zero subtraction down to low P_T => most demanding – smallest Moliere/tower size

Electron ID at very low P_T (eventually with TPC dE/dx) > most demanding – smallest Moliere/tower size

Direct photon at higher P_T with hadron isolation
 => less demanding - need to be quantitative - needs real simulations to justify tower size

Electron ID at high P_T (eventually with TPC dE/dx)
 => less demanding - need to be quantitative - needs real simulations to justify tower size

EMCal Requirements & Cost

What physics actually drives EMCal design?

Jets => Not demanding on Moliere/tower/resolution

What physics program actually drives EMCal design and cost?

I guess it's important not to appear to spend too much money to repeat your favorite RHIC measurements with S-PHENIX

Portion of HCal inside magnet:

Probably fine for pp and e RHIC but what is impact on jet resolution?

The most important question for AuAu jets at RHIC is where is and what happens to the radiated gluon energy in quenching? Need to compare to LHC.

So, In AuAu, what is the impact on soft jet component of the intervening magnet in the middle of the HCal?

Need jet simulations with and without quenching to answer this.

ALICE-style EMCal scenarios and Cost

- 1. present integration scheme (ignoring for the moment that only half the needed radial space is available)
 - ~ 15 m² of EMCal front surface area
 - ~ 1050 ALICE EMCal Modules (4200 towers)

Parts and material: \$1400 per module includes estimated escalation

Labor: 6 FTE-Years Technicians , One Foreman FTE-year \$700k fully loaded

Total Cost: \$2.2M

Excluding Integration, Conventional Systems, Electronics

Comments: Highly Leveraged Tooling, Engineering Project Management Experience

OAK RIDGE NATIONAL LABORATORY

ALICE-style EMCal scenarios and Cost

1. present integration scheme (ignoring for the moment that only half the needed radial space is available)

Extra Cost Options:

- => Increase Pb/Scint ratio
- => 9 towers/module 4 cm x 4 cm
- => Conversion to tungsten

Positive:

This option would review easily in short time Completely Credible cost / schedule / Technical team

Negative:

Doesn't fit in present integration scheme

ALICE-style EMCal scenarios and Cost

- 2. Move back to present Inner HCal position
 - Cost scales like surface area with (15m² = \$2.2M) => \$3.5M
 - Physics performance fully known meets requirements (?)
 - Ready to Review in ~6 months
 - Completely credible cost / schedule / technical team

Extra Cost Options:

- => Increase Pb/Scint ratio
- => 9 towers/module 4 cm x 4 cm
- => Conversion to tungsten

Extra Slides

Position Resolution in the range 4 - 2 mm for p=4 to 33 GeV/c

CAK RIDGE NATIONAL LABORATORY

CAK RIDGE NATIONAL LABORATORY

Alternate Fiber bundle method e.g. (IHEP): Continuous fiber with a loop – no mirror Cut and polish fibers after installation in module

*****Oak Ridge National Laboratory

Wayne State Group

Scintillator QC/QA

scintillator attenuation length and absolute fluorescence

CAK RIDGE NATIONAL LABORATORY

Tile to Tile optical Cross Talk

Tile to Tile optical Cross Talk

OAK RIDGE NATIONAL LABORATORY