Calorimeter Design for SoLID Project

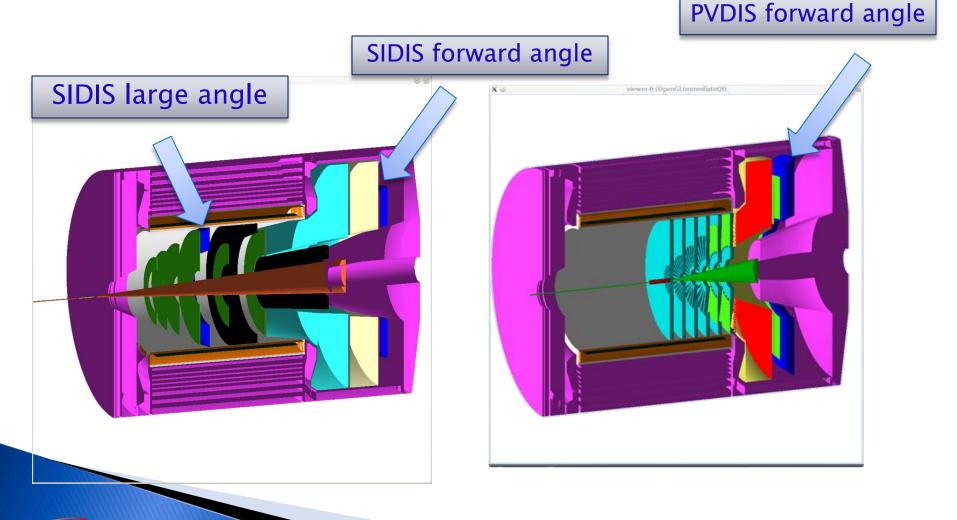
Jin Huang, Mehdi Meziane, Zhiwen Zhao Physics Division Review Session on SoLID Project Sept 30, 2011, Jefferson Lab

OUTLINE

Requirement

Design Progress

- Shashlyk calorimeter
- Preshower/shower separation
- Clear fiber connector


Budget Estimation

Conclusion

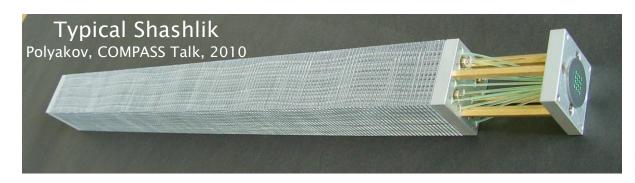
Calorimeter Design

Calorimeters for SoLID experiments

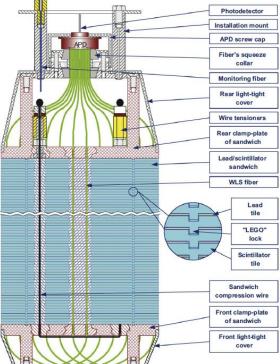
Calorimeter Design

Requirement

- Electron-hadron separation
 - 100:1 pion rejection in electron sample
 - Energy resolution: $\sigma(E)/E \sim 6\%/\sqrt{E}$
- Provide shower Position
 - $\circ~\sigma$ ~1cm, for tracking initial seed / suppress background
- Time response
 - $\circ~\sigma<\sim$ few hundreds ps
 - provide trigger/identify beam bunch (TOF PID)
- Radiation resistant
 - PVDIS forward angle
 - EM $\leq = 2k \text{ GeV}/\text{cm}^2/\text{s} + \text{pion (GeV}/\text{cm}^2/\text{s}),$
 - SIDIS forward angle
 - EM $\leq =5k \text{ GeV}/\text{cm}^2/\text{s} + \text{pion}$, total,
 - SIDIS large angle
 - EM <=20k GeV/cm²/s + pion, total,


total ~<60 krad/year

total ~<100 krad/year


total ~<400 krad/year

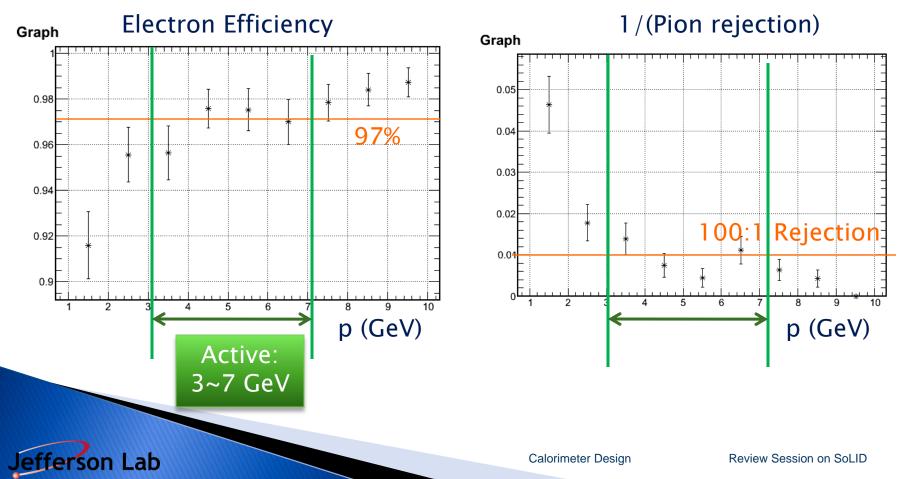
Best option: Shashlyk calorimeter

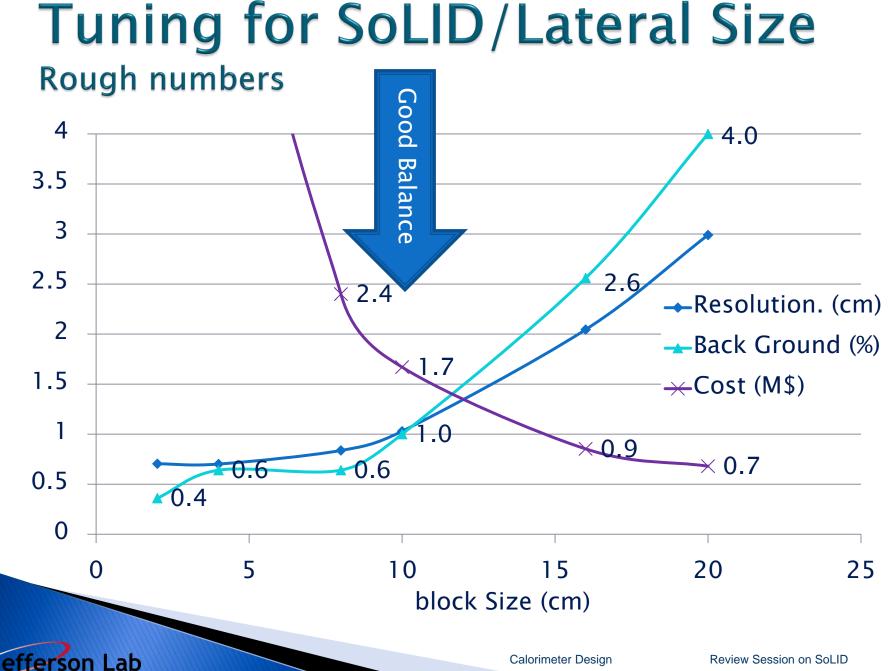
- Shashlyk calorimeter
 - Lead-scintillator sampling calorimeter
 - Fiber collects and reads out light
- Satisfy the SoLID requirement
 - Good energy resolution (tunable)
 - Radiation hardness ~ 500kRad
- Easier to collect and read out the light
- Well developed technology, many experiments

KOPIO

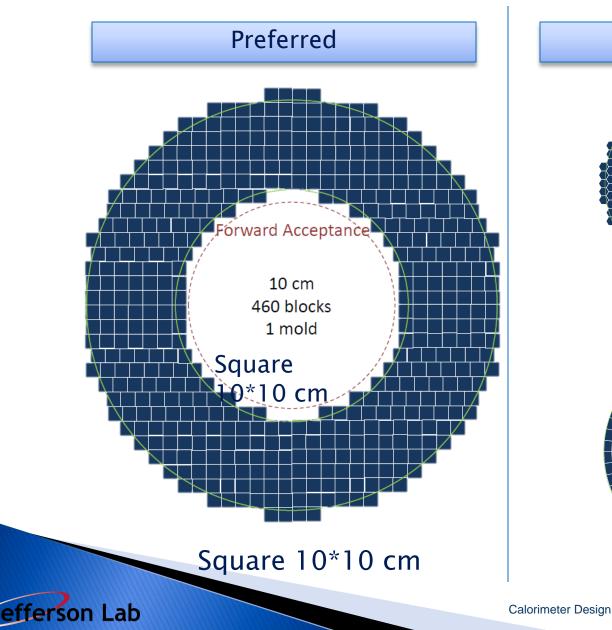
Flexible Design of Shashlyk Detectors

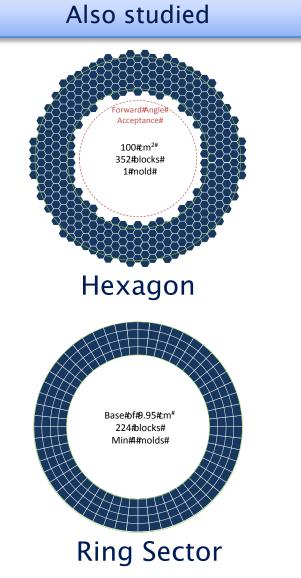
- Flexible design to customize for exp. needs
- Experience collaborations contacted
 - IHEP@Protvino (design & production), INR@Trozik (design), Uniplast (production)
 - 200 module/month mass production (~1500 needed)


Experiment	COMPASS	PANDA	ΚΙΡΙΟ
Pb Thick/ Layer (mm)	0.8	0.3	0.28
Sci Thick/ Layer (mm)	1.5	1.5	1.5
Energy Res. a/sqrt(E)	6.5%	~3%	~3%
Rad. Length, X ₀ (mm)	17.5	34	35
Total Rad. Length (X ₀)	22.5	20	16
Moliere radius (mm)	36	59	60
Typical Detecting Energy	10 ¹ ~10 ² GeV?	<10GeV	<1GeV
Trans. Size (cm)	~4x4	11x11	11x11
Active depth(cm)	400	680	555


Tuning for SoLID/Lead-Sci Ratio

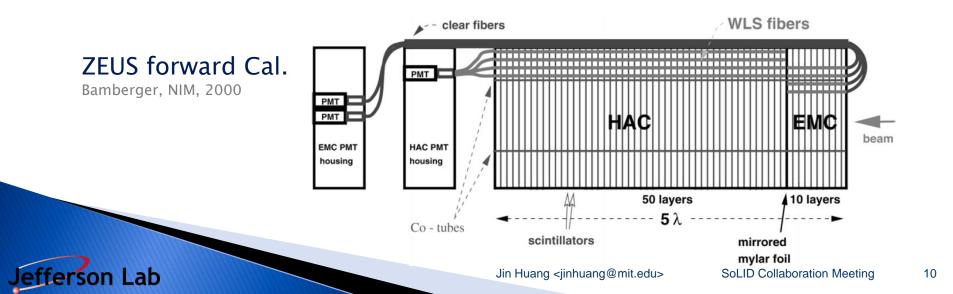
Dedicated Geant4 MC developed


Reach 100:1 pion rejection w/ Pb thick =0.6mm/Layer



7

Layout map



Review Session on SoLID

Preshower/shower

- Preshower-shower separation for better electrion ID
- Options
 - Curve fiber from front, example (ZEUS) below
 - Run fiber through shower part within light-protected tube
 - Run preshower fiber (separately) to outside magnetic field

Photon Readout Options

- Large angle calorimeter
 - Prefer transporting photons to outside magnetic field
 - No field/PMT read out/easy to maintain
- Forward calorimeter
 - A. In field readout (<~100G), PMT with mu-metal shielding
 - B. Transport photons to outside end cap
 - Options still under study.
- Fiber connectors and clear fiber
 - Clear fiber are cheaper, w/ longer attenuation length

Budget (preliminary)

Experime nt	Angle(d egree)	Radius(c m)	Area(m²)	Number of modules	Module cost (M\$)	Fiber Extension (M\$)	PMT+ support (M\$)	Total cost
PVDIS (forward angle)	22-35	110- 258	~10	1000? ~Baffle design	1.5	0	0.6	2.1
SIDIS (forward angle)	9-15	107- 202	11	948				
SIDIS (large angle)	17-24	82-141	5	460	0.8	0.3(?)	0.3	1.4

- +Support structure: 0.2M\$ (?)
- 10x10cm Shashlyk module costs about \$1~1.5K each
- PVDIS : factor 0.5 reduction due to only covers ~half of azimuthal angle, which depends on baffle design.
- PVDIS and SIDIS forward angle calorimeter will rearrange modules

Summary

Shashlik calorimeter is the best option

 Good energy resolution/Radiation resistant/Concentrated photon output/Matured production

Tuning the design for SoLID

 Tuning Pb-Sci ratio/Preshower-shower thickness/lateral size and shape/layout

Exploring new features

Preshower/shower splitting/clear fiber extensions

