

Cherenkov Detectors for SoLID Simona Malace, Haiyan Gao Duke U. Zein-Eddine Meziani, Eric Fuchey Temple U.

September 30th, 2011

Requirements

Threshold Cherenkov:

electron-pion separation: SIDIS & PVDIS pion-kaon/proton separation: SIDIS

SIDIS electron Cherenkov: 1.5 – 4.5 GeV SIDIS pion Cherenkov: 2.5 – 7.5 GeV

PVDIS Cherenkov: 2 – 3 GeV

$\Rightarrow 2\pi \text{ coverage (SIDIS)}$

➡ Perform in non-negligible magnetic field environment

Simple design: cost effective, easy to install, operate

Design: Mirrors

It follows the current sector division of SoLID

⇒ Mirrors: ring of 30 spherical mirrors, each over 1 m long

 \rightarrow Good focusing of Cherenkov light on small size photon detectors

→ Each spherical mirror will be manufactured in 2 parts (manufacturer and vacuum deposition chamber limitation)

We consider materials other than glass; light and rigid to remove the need for double-edge support for no impact on the physics phase space

Design: Photon Detectors

➡ Photon detectors:

GEMs + CsI (used by PHENIX) → Insensitive to magnetic field → CsI: sensitive to deep UV light, high quantum efficiency (up to 60-70% at 110 nm)

Mirrors with good reflectivity in deep UV

PMTs

 \rightarrow Sensitive to magnetic field

Photocathodes typically sensitive to visible light mostly

We need PMTs:-

Resistant in SoLID magnetic field

Suitable for tilling

Electron Cherenkov Signal: GEMs + CsI

→ Very similar configuration possible for SIDIS and PVDIS

- same tank except for additional piece for SIDIS
- same mirrors, mounted at the same location
- same GEMs + CsI, mounted at different locations
- same gas: CF₄

23 cm X 27 cm (PHENIX size)

The 2 parts of each spherical mirror will have same curvature

→ Signal estimates are based on the PHENIX HBD performance

Electron Cherenkov Signal: PMTs

Different configurations for SIDIS and PVDIS

- different gas: CO₂ for SIDIS, C₄F₁₀ for PVDIS
- different mirrors
- different size of PMT arrays and different Winston

The 2 parts of each spherical mirror of different curvatures to reduce the number of PMTs per sector

SIDIS Hadron Cherenkov Signal: PMTs

Similar design as for SIDIS electron Cherenkov, the PMT option

• gas: C₄F₁₀

• mirrors: parts with different curvature to reduce the number of PMTs per sector \rightarrow work in progress

PMTs in Magnetic Field

➡ From H8500C field tests at Temple U.

- \rightarrow at 20 G (longitudinal field): < 10% signal loss \rightarrow at 70 G: 30%
- Request sent to Amuneal for "ideal" shield which will incorporate the Winston cones
 - <u>longitudinal</u> component of the magnetic field from 150 G to < 20 G
 - transverse component of the magnetic field from 70 G to 0 G

Plans for Hardware Tests

\Rightarrow H8500C-03 test in Hall A during g_2^p :

 \rightarrow "simple" background test: PMT in dark box placed "strategically" in the hall in in-beam environment

\Rightarrow GEMs + CsI test in Hall A during g_2^p :

In collaboration with some from the Stony Brook/BNL HBD group; interested in tests for future EIC developments

→ Phase 1 – "background response" test: one GEM + CsI unit placed in small tank with Argon gas (for example)

 \rightarrow Phase 2 – "signal response" test: one GEM + CsI unit placed in tank with CF₄ gas and mirror

Need to figure out feasibility: enough counting rates where space could be available ?

KAINSTORM

(Some) Preliminary Cost Estimates

\Rightarrow Configuration 1:		SIDIS/PVDIS e ⁻ Cherenkov	SIDIS π Cherenkov
SIDIS/PVDIS e ⁻ Cherenkov ~725 K	Mirrors	25,000	25,000
	Mirror coating	100,000	100,000
SIDIS π Cherenkov ~1.2 M	PMTs	-	3,000 X 279** = 837K
	Cones*	-	1,350 X 31
	GEMs + CsI	200,000?	-
	Gas system	200,000?	200,000?
	Tank	200,000?	200,000?
➡ Configuration 2:		SIDIS/PVDIS e ⁻ Cherenkov	SIDIS π Cherenkov
SIDIS/PVDIS e ⁻ Cherenkov ~1.3 M	Mirrors	25,000 X 2	25,000
	Mirror coating	100,000 X 2	100,000
SIDIS π Cherenkov ~1.2 M	PMTs	3,000 X 124 = 372 K	3,000 X 279**
	Cones*	1,350 X 62 = 83.7 K	1,350 X 31 = 41.9 K
	Gas system	200 0003 X 2	_

200,000?

200,000?

*Cost for straight cones; Winston cones substantially more expensive

Tank

** will attempt to reduce it to 124

Summary

➡ We need 3 threshold Cherenkov detectors for electron and pion identification (for approved SIDIS and PVDIS experiments):

→ Design: system of spherical mirrors will focus the Cherenkov light on small-size photon detectors

- Configuration 1 SIDIS/PVDIS e⁻ Cherenkov: magnetic field insensitive GEMs + CsI SIDIS π Cherenkov: SoLID magnetic field insensitive PMTs (with shielding)
- Configuration 2 SIDIS/PVDIS e Cherenkov and SIDIS π Cherenkov: SoLID magnetic field insensitive PMTs (with shielding)
- Hardware tests of both photon detectors planned before the shutdown

\Rightarrow More to do:

- \rightarrow Iterate design
- \rightarrow switch to "final" magnet configuration (CLEO)
- \rightarrow implement Cherenkov design in official SoLID simulation, GEMC \rightarrow ...

Backup Slides

Optimization of optical system GEMs + CsI

- \rightarrow Photocathode
- \rightarrow GEMs
- \rightarrow Gas
- \rightarrow Mirrors

PMTs: H8500C-03

Optimization: PVDIS, GEMs + CsI

RAINSTO

RAINSTOR

GEMs + CsI: Photocathode

General, ~random facts about CsI: why CsI?

→ highest efficiency of solid UV photocathodes: low electron affinity & large electron escape probability

→ UV photocathode preferred over visible range ones because the latter are highly reactive to even extremely small amounts of impurities (oxygen, water)

→ typically deposited on metal substrates (or optically transparent substrates if semitransparent)

→ deposition on Cu should be avoided (Cu and Csl interact chemically): best results deposition of Csl on Cu coated with Ni or Ni/Au

 \rightarrow Photoemission of electrons depends on gas and electric field

Fig. 1. Typical quantum yields versus wavelength for reflective alkali halide photocathodes. Shown for comparison is a typical quantum yield curve for a semitransparent CsI photocathode deposited on a LiF window (CsI S.T.) [2].

A. Breskin, NIM A 371 (1996) 116-136

GEMs + CsI: Photocathode

General, ~random facts about CsI: degradation because of ...

→ humidity: decay caused by hydrolysis example: 50% reduction in QE after 100 min. exposure to air with 50% humidity

→ post-evaporation heat-treated photocathodes have a considerably lower decay rate when exposed to humidity —>

→ intense photon flux and ion bombardment: decay caused by dissociation of CsI molecules; iodine atoms evaporate and Cs+ with a higher e- affinity causes a reduction in QE

 \rightarrow surface contamination

radiation damage with neutral or charged particles

A. Breskin, NIM A 371 (1996) 116-136A. Breskin et al., NIM A 442 (2000) 58-67

Fig. 22. The decay of the QE of CsI films evaporated on Ni/Aucoated printed circuit board under exposure to air, at a relative humidity of 35% [30].

GEMs + CsI: Photocathode

PHENIX facts on CsI: deposition, QE measurements, monitoring

 \rightarrow assembly and coating: Stony Brook

GEMs assembled in clean (dustfree) and dry (H₂O < 10 ppm) environment

Au GEMs coated with CsI using evaporator; QE measured at one wavelength, 160 nm (at BNL the QE is measured from 120 nm to 200 nm)

The CsI coated GEMs are then transferred and assembled inside a glovebox

100 - WIS (Vac) 90 We use this in _ ▲ BNL(CF4) 80 our simulation BNL(Vac) 70 Absolute QE (%) 60 50 40 30 20 10 120 110 130 140 150 160 170 180 190 200 Wavelength (nm)

→ relative measurements of CsI QE performed periodically during PHENIX to check for possible degradation (special device needed)

arXiv:1103.4277v1 [physics.ins-det] 22 Mar 2011 B. Azmoun *et al.*, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 3, JUNE 2009

GEMs + CsI: GEMs

➡ GEMs: pictures from Tom Hemmick

→ HV creates very strong field such that the avalanche develops inside the holes

Makes it insensitive to magnetic field

Deposition of photocathode on the first layer of GEM makes it **photon-feedback blind**: avalanche-induced photons CANNOT reach the photocathode

GEMs + CsI: Gas

 \Rightarrow Need a gas transparent to deep UV light: CF₄

• The gas purity is very important: impurities can affect the gas transmittance (and photocathode performance)

Water and Oxygen: strong absorption peaks for Cherenkov light where Csl is sensitive (< 200 nm)

Small levels of either impurity => loss of photons and therefore loss of photoelectrons

 PHENIX had an independent monitoring system to detect low levels of contamination arXiv:1103.4277v1 [physics.ins-det] 22 Mar 2021

GEMs + CsI: Gas

 \Rightarrow Need a gas transparent to deep UV light: CF₄

• <u>The gas</u> purity is very important: impurities can affect the gas transmittance (and photocathode performance)

 PHENIX recirculating gas system used to supply and monitor pure CF₄ gas • Gas transmittance monitor system used by PHENIX to measure impurities at the few ppm level

arXiv:1103.4277v1 [physics.ins-det] 22 Mar 2011

GEMs + CsI: Gas

 \Rightarrow Need a gas transparent to deep UV light: CF₄

• <u>The gas</u> purity is very important: impurities can affect the gas transmittance (and photocathode performance)

GEMs + CsI: Mirrors

We need mirrors with good reflectivity in deep UV

Nuclear Instruments and Methods in Physics Research A300 (1991) 501-510

Fig. 36. Measured reflectance for a typical mirror piece. The measurements have been performed shortly after production, 1 and 2 years later.

P. Abbon et al. , Nuclear Instruments and Methods in Physics Research A 577 (2007) 455–518

cutoff at 150 nm from quartz window

GEMs + CsI: Mirrors

We need mirrors with good reflectivity in deep UV

We use this in our simulation

Hamamatsu specifications:

H8500 Magnetic Field Characteristics

➡ H8500C magnetic field tests at Temple U.: July 18-22, 2011

→ We tested H8500C (H8500C-03 expected to have similar response in magnetic field)

➡ H8500C magnetic field tests at Temple U.: July 18-22, 2011

 \rightarrow The PMT experiences "only" a 30% signal reduction at 70 G (not bag