Use MCP-PMT as Time-of-Flight in SoLID

Yi Qiang
SoLID Collaboration Meeting
Mar 22, 2013
Large area planar photo-detectors are under development by Large-Area Pico-second Photo Detector (LAPPD) collaboration

- Newly funded by DOE and NSF since fall 2009:
 - Members mainly from ANL, FNL, Uchicago, Uhawaii, UCB and three small US companies.

- Goal: develop a family of large-area robust photo-detectors with good position and timing resolution that can be tailored for a wide variety of applications where large-area economical photon detection is needed.

- Use of renovated micro-channel plates (MCPs)

- http://psec.uchicago.edu

- Thank Dr. Marcel Demarteau (ANL)
Micro-Channel Plate-PMTs

- Ceramic body prototype
- Glass window
- Photocathode
- Micro-Channel Plates (MCPs)
- Anode Strips
- Glass window
- Front-End Elec.

20 × 20 cm²
LAPPD program was a new instrumentation initiative, not an ongoing program; no pre-existing group, started with transient seed funding.
Photocathode

- **Argonne National Lab**
 - Atomic Layer Deposition (ALD)
 - Using Burle ALD equipment
 - 7”×7” flat K$_2$CsSb photocathode was produced
 - Max QE: 22% (350 nm, average: 16%)

- **UC Berkeley**
 - Chemical Vapor Deposition (CVD)
 - Deposited Na$_2$KsSb photocathode on 8” windows
 - 25% QE (350nm) with good uniformity (15%) and stability
Micro-Channel Plates

- **Conventional Pb-glass MCP**
 - Chemically produced and treated
 - Provides three functions:
 - Provides pores
 - Resistive layer supplies electric field in the pore
 - Pb-oxide layer provides secondary electron emission

Typical pore size: 20 – 40 um
MCP by LAPPD

- MCP produced with ALD
 - Separate three functions, more freedom for optimization
 - Glass substrate with pores
 - Tuned Resistive layer provides current for electric field
 - Specific Emitting layer provides secondary electron emission

- Good performance with lower cost
 - Gain > 10^7 for pair MCPs
 - Tilting pore angle optimized for better acceptance

Glass Substrate by INCOM Borosilicate, 20 um pores
Readout Electronics

- Transmission line read by waveform sampling chips
 - 5 mm strips, Bandwidth > 1.5 GHz, Sampling rate: 40 GS/s
Time Resolution

- Transmission line readout and pulse sampling provide fast timing (2-10ps).
 - Transmission line should have a signal bandwidth matched to the detector
 - Achieved 3.8 ps with 50 P.E.
 - Naively $\sigma_T \sim 1/\sqrt{N_{PE}}$
 - 190um position resolution

3.8 ps translates in 190 μm position resolution with 50 photo-electrons
Future Plan of LAPPD

- **Year 1 (2013)**
 - First sealed ceramic tube.
 - First small \((5 \times 5 \text{ cm}^2)\) glass body tube.
 - Complete 8" single tile processing system design.

- **Year 2 (2014)**
 - Improve/optimize ceramic tube fabrication.
 - Demonstrate individual processing steps.
 - Fabricate first 8" glass body tube.

- **Year 3 (2015)**
 - Establish routine production
 - Customizations for early adopter
Possible Applications

- Large area photo-detectors with extended capability
- Neutrino experiments
- TOF at collider detectors
- TOF/RICH – PID applications
 - PANDA
 - Glue-X
 - SoLID
 - EIC
- Broader impact
 - X-ray detectors
 - PET
 - Neutron detection
 - Homeland security
Photons from Cherenkov Radiation in front window induced by relativistic charged particles

* Typical time resolution of RF signal from accelerator is 5 ps
Other Important Numbers

- **MCP life time**: $\gg 0.01 \text{ C/cm}^2$
 - 10^6 gain $\rightarrow 6 \times 10^{10} \text{ PE/cm}^2$ (1kHz P.E./cm2 \rightarrow 700 days)

- **Noise Level**: $< 0.1/\text{cm}^2/s$
 - comparable to cosmic

- **Saturation Current**: Unknown
 - Conventional Hamamatsu MCPs: $> 2 \times 10^{-6} \text{ A/cm}^2$
 - 10^6 gain $\rightarrow 1 \times 10^7 \text{ PE/s/cm}^2$

- **Radiation Hardness**: Unknown

- **Cost**: $6000 \text{ (MCP)} + 4000 \text{ (Electronics + DAQ)}$
Plans and Resources

- Proposal submitted to DOE ECP by Y. Qiang
 - UPGRADE OF THE GLUEX SPECTROMETER FOR PHYSICS WITH STRANGE FINAL STATES

- Proposal to be submitted to Jlab LDRD by Y. Qiang and C. Zorn
 - Development of Cherenkov Particle Identification Detectors using Micro-Channel Plate Photo-Multiplier Tubes

- Both proposals require MCP-PMTs from LAPPD for testing

- LAPPD DOE review documents:
 - Dec 9, 2011: https://twindico.hep.anl.gov/indico/conferenceDisplay.py?confId=740
 - Dec 18, 2012: https://twindico.hep.anl.gov/indico/conferenceDisplay.py?confId=1201
MCP Performance

- Single MCP, 33mm diameter, 20μm pore borosilicate MCP substrate, L:d = 60:1, 8 degree pore bias
- MCP disks functionalized with identical “Chemistry 2” resistive coating and Al₂O₃ SEE layer
- Single MCP tests in DC amplification mode imaging and gain very similar to conventional MCPs.
- MCP pair gain of > 10⁷ with > 10⁵ in a single plate
 - Attractive for cost/simplicity
PSEC4 Waveform Sampling ASIC

- Resolution depends on # photoelectrons, analog bandwidth, and signal-to-noise.

- Simulations showed “pulse sampling” to give the best results

Measured!