Hadron Elecro-Production with HallD Generator

Rakitha S. Beminiwatthan

Department of Physics, Syracuse University

September 11th, 2015
Outline

Overview

Hall D Generator

Electro-Production Implementation

Initial Results
From Last Meeting: Photo-Production Models Compared

- Total Photo-production cross sections from hall D
- Total Photo-production cross sections from PDG [1]
- Wiser Photo-production cross section summed for all the processes [2]
Hall D Photo-Production Generator

- Hall D generator uses various experimental data to generate photo-production cross sections for photon energies below 3 GeV
- It uses modified version of PYTHIA to generate photo-production cross sections for photon energies above 3 GeV
 - I have not looked at PYTHIA generator in details yet.

Following $\gamma + p^+$ reactions are considered for photon energies below 3 GeV

1. $p^+ + \pi^0$
2. $n + \pi^+$
3. $p^+ + \pi^+ + \pi^-(\text{non-res.})$
4. $p^+ + \rho^0$
5. $\Delta^{++} + \pi^-$
6. $p^+ + \pi^0 + \pi^0$
7. $n + \pi^+ + \pi^0$
8. $p^+ + \eta^0$
9. $p^+ + \pi^+ + \pi^- + \pi^0$
10. $n + \pi^+ + \pi^+ + \pi^-$
Compare Hall D vs. PDG

- Compared total cross sections from Hall D event generator and PDG photo-production cross sections on proton
- For γ momentum less than 3 GeV it uses combination of different models including SAID
- For γ momentum greater than 3 GeV it uses PYTHIA

Figure: Black line: Hall D generator, Red points: PDG
From Photo-Production to Electro-Production

- Electro-Production can take place either from real bremsstrahlung photon radiated in the target or from virtual photon interaction approximated by Equivalent Photon Radiator (EPA) approximation.
- Wiser generator estimates these two components to compute the electro-production cross-section.
 - Bremsstrahlung contribution approximated according to MO and TSAI [3].
 - Virtual contribution approximated using the reference [4].
- I have implemented electro-production part to the hall D event generator.
 - Bremsstrahlung contribution is implemented using equations available at PDG-2012 [5] and [6].
 - EPA contribution is implemented according to the reference [7].
- Next few slides will summarize the electro-production implementation.
Electro-Production Implementation

Electro-Production with Equivalent Photon Approximation

Figure: Electro-Production (a) and Photo-Absorption (b) equivalency [7]

The electro-production cross section for electron energy E using Equivalent Photon Approximation (EPA),

$$d\sigma = \sigma_\gamma(\omega) \cdot dn(\omega)$$

$$dn(\omega) = \int_{q_{\min}^2}^{q_{\max}^2} dn(\omega, q^2) = N_{EPA}(\omega) \frac{d\omega}{\omega}$$

where $\sigma_\gamma(\omega)$ is photo-production cross section at photon energy ω and,

$$N_{EPA}(\omega) = \frac{\alpha}{\pi} \left[\left(1 - \frac{\omega}{E} + \frac{\omega^2}{E^2} \right) \ln \frac{q_{\max}^2}{q_{\min}^2} - \left(1 - \frac{\omega}{2E} \right)^2 \ln \frac{\omega^2 + q_{\max}^2}{\omega^2 + q_{\min}^2} - \frac{m_e^2 \omega^2}{E^2 q_{\min}^2} \left(1 - \frac{q_{\min}^2}{q_{\max}^2} \right) \right]$$
Electro-Production with Radiated Real Photons

The Bremsstrahlung cross section for electron of energy E traveling inside a material [5]

$$ \frac{d\sigma}{d\omega} = \frac{A}{X_0 N_A \omega} \left(\frac{4}{3} - \frac{4\omega}{3E} + \frac{4\omega^2}{3E^2} \right) $$

The electro-production cross section due to Bremsstrahlung photons,

$$ d\sigma = \sigma_\gamma(\omega) \cdot N_{BREMS}(\omega) \frac{d\omega}{\omega} $$

$$ N_{BREMS}(\omega) = \frac{d}{X_0} \left(\frac{4}{3} - \frac{4\omega}{3E} + \frac{4\omega^2}{3E^2} \right) $$

Where X_0 is the radiation length and $d = \rho \cdot t$ where ρ is target density and t is target thickness.
EPA Photon Spectrum

Figure: Photon Spectrum $N_{EPA}(\omega)$
Bremsstrahlung Photon Spectrum

Bremsstrahlung $N_{\gamma}(\omega)$ for 11 GeV e^{-} Beam

Figure: Photon Spectrum $N_{\text{BREMS}}(\omega)$
Complete Photon Spectrum

Figure: Photon Spectrum $N_{EPA}(\omega) + N_{BREMS}(\omega)$ for electron incident on a proton target
Electro-Production with Hall-D Generator

- Photon energy is sampled using electro-production cross section weighted distribution
- 11 GeV electron beam (50 μA) is incident into a 40 cm hydrogen target

Figure: Hall D generator now samples the photon energy using electro-production cross section weighted distribution
Electro-Production: π^0

Figure: π^0 Only for $\theta < 90^0$ and $P < 2$ GeV. Total cross-section is $\sim 30 \, \mu b$ for this limited kinematic phase-space.
Pion Background from Different Methods

Figure: Using EPC code (see Michael Paolone’s May 2015 collaboration meeting talk). Total cross section is $\sim 14 \, \mu b$
Pion Background from Different Methods

Figure: Using Std. Wiser Generator (see Michael Paolone’s May 2015 collaboration meeting talk). Total cross section is $\sim 80\mu b$
Summary

- Hall D generator is now configured with electro-production from proton target.
- Needs to tweak $\frac{q_{\text{max}}^2}{q_{\text{min}}^2}$ better: Paul working on this.
- Initial result match with the EPC code.
- Cross section to a factor of 2 but not sure EPC results have real photon contribution.
- Next immediate step: folding SoLID acceptance into these distribution and do a rate estimation.
- Next long term step: implement a proper Geant4 generator based on the hall D generator.
Electro-Production: π^0
Electro-Production: π^-
Electro-Production: π^+

[Graphs showing Electro-Production π^+ Kinematics from Hall D Generator]
Electro-Production : π^0

Electro-Production π^0 Momentum from Hall D Generator

Electro-Production π^0 θ from Hall D Generator
Initial Results

Electro-Production: π^-

Electro-Production π^- Momentum from Hall D Generator

Electro-Production π^- θ from Hall D Generator
Electro-Production : π^+

Electro-Production π^+ Momentum from Hall D Generator

Electro-Production π^+ θ from Hall D Generator
Compare Hall D vs. PDG

Compared total cross sections from Hall D low energy event generator and PDG photo-production cross sections on proton for γ momentum less than 3 GeV
Wiser Photo-Production Cross Section

- Wiser cross section, $\sigma_i(E_\gamma)$ is computed for all the processes: π^\pm, K^\pm, P^+ and \bar{P}^-
- The cross section for π^0 is the average of π^\pm cross sections
- Then all the cross sections are summed to compute the total wiser cross section
- See slide 27 for steps
Wiser Photo-Production Cross Section

![Gamma-p Cross Section Comparison](image)

- **Wiser**
- **PDG**
- **Hall D**

Cross Section (mb)

Gamma Lab Momentum (GeV)
Wiser Photo-Production Cross Section

Figure: Wiser cross section only for 10 deg. to 90 deg.
Wiser Code Steps

- The main FORTRAN routine returns the differential cross section per monochromatic photon beam: \(E' \frac{d^3\sigma}{dp'd\Omega} / E_\gamma \)
- Where \((E', p')\) is the hadron momentum and \(E_\gamma\) is the incident photon energy
- The total cross section for a monochromatic photon beam for \(i^{th}\) type interaction,

\[
\sigma_i(E_\gamma) = \int_{\text{phase-space}} \frac{d\sigma_i(E_\gamma)}{dp'd\Omega} dp'd\Omega
\]

- Where \(\frac{d\sigma_i(E_\gamma)}{dp'd\Omega} = \frac{p'^2}{E'} \cdot \left(E' \frac{d^3\sigma}{dp'^3} / E_\gamma \right) \cdot E_\gamma \)
- And subscript \(i\) is,
 1. \(i = 0, 1: \pi^\pm\)
 2. \(i = 2, 3: K^\pm\)
 3. \(i = 4, 5: P^+\) and \(\bar{P}^-\)

\(\pi^0\) cross section is the average of \(\pi^\pm\) cross sections
K.A. Olive et al.
Review of Particle Physics.

S. Riodan, X. Zheng, Z. Zhao, and N. Ton.
Comparison between Wiser π^- rates calculation and data from transversity and PVDIS experiments.
Internal document, 2014.

L. W. MO and Y. S. TSAI.
Radiative corrections to elastic and inelastic ep and up scattering.

Min-Shih Chen and Peter Zerwas.
Equivalent-particle approximations in electron and photon processes of higher-order qed.

J. Beringer et al.
Review of particle physics.

Yung-Su Tsai.
Pair production and bremsstrahlung of charged leptons.

V.M. Budnev, I.F. Ginzburg, G.V. Meledin, and V.G. Serbo.
The two-photon particle production mechanism. physical problems.
applications. equivalent photon approximation.