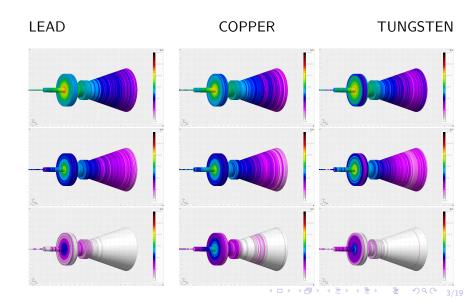


Radiation and Activation with SoLID

Outline

- Director's Review suggestions
- Baffle Materials Activation
- Radiation on Coil
- Radiation in the Hall Change of SoLID
 - configurations


Conclusions

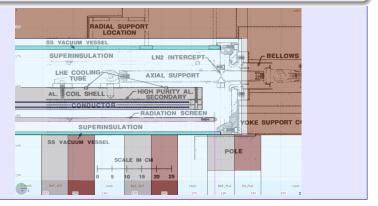
Lorenzo Zana The University of Edinburgh December 3, 2016

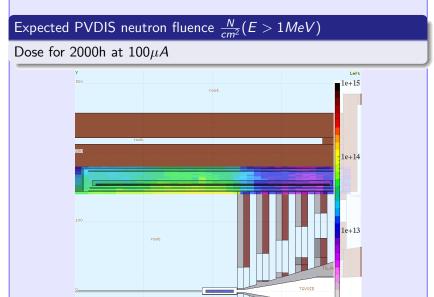
-1000

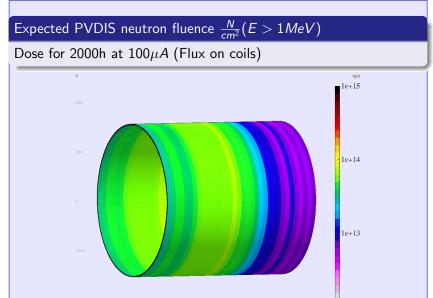
- Baffle material optimization
- More detailed study on radiation on magnet's coil
- More detailed on impact of radiation in the Hall with focus on areas where electronics will be present
- Planning on how to change from one SoLID configuration to another: Better understanding of effort involved and potential issues on radiation levels

Baffle: Different Material Activation

Baffle: Different Material Activation


Baffle's material Activation


- Different material were tested for the first 3 layers of baffle/shielding
- At this presentation just shown the first baffle, but material dependence is comparable also for the other baffles analyzed
- Copper shows a longer decaying time for the activated isotopes (after 1month radiation is ¡ 1 order of magnitude respect to Lead and Tungsten)
- If Copper is chosen some shielding enclosure will be needed to be placed for dispose of the baffle.


- Baffle material optimization (more detail here)
- More detailed study on radiation on magnet's coil
- More detailed on impact of radiation in the Hall with focus on areas where electronics will be present
- Planning on how to change from one SoLID configuration to another: Better understanding of effort involved and potential issues on radiation levels

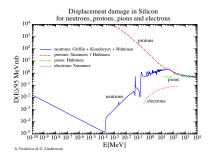
Updated Coil design to CLEO

The PVDIS configuration with Deuterium target present the main source for neutron fluxes on the coils

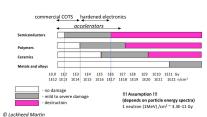


Expected PVDIS neutron fluence $\frac{N}{N}(F > 1 MeV)$

Dose



- A reduction of $\sim 20\%$ in I_c is expected in the range $2 \times 10^{17} < \frac{N}{cm^2} < 2 \times 10^{19}$
- The expected accumulated fluence for PVDIS is $< 10^{14} rac{N}{cm^2}$


- Baffle material optimization (more detail here) V
- More detailed study on radiation on magnet's coil (more detail here) V
- More detailed on impact of radiation in the Hall with focus on areas where electronics will be present
- Planning on how to change from one SoLID configuration to another: Better understanding of effort involved and potential issues on radiation levels

Radiation Estimates and Tolerance

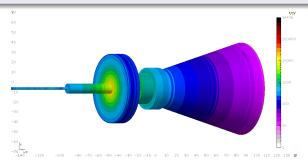
Radiation Estimates

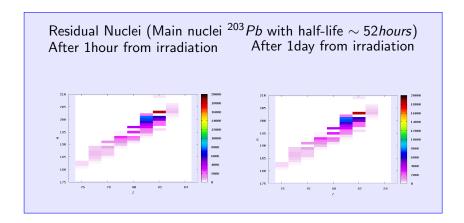
Tolerance (guideline)

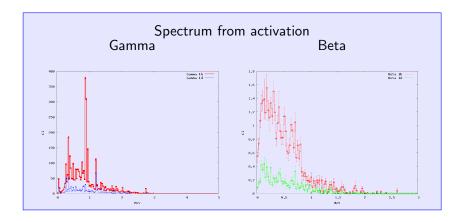
More detail on Radiation in the Hall

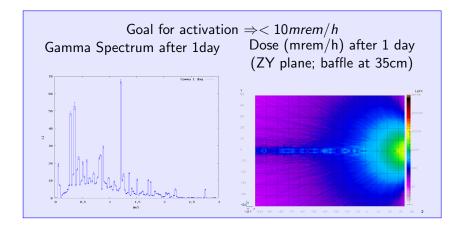
Updating design

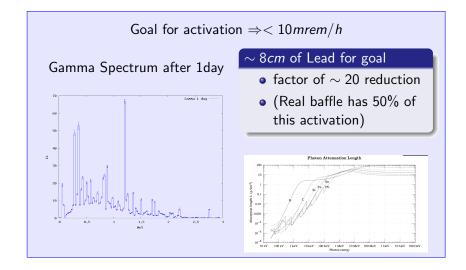
- Outside the beamline enclosure (2m) accumulated radiation dose should be below the $10^{13} \left(\frac{1 MeV Neutron}{cm^2} \right)$
- At this level of accumulated radiation no expected damage is expected to detectors




- Baffle material optimization (more detail here) V
- More detailed study on radiation on magnet's coil (more detail here) V
- More detailed on impact of radiation in the Hall with focus on areas where electronics will be present (more detail here) V
- Planning on how to change from one SoLID configuration to another: Better understanding of effort involved and potential issues on radiation levels (shown here)


Change of SoLID configurations


Considering just radiation level issues


The PVDIS configuration with Deuterium target presents strong activation on the first baffle

Conclusions

Director Review's Replies to the Report

- Work proceeding towards completion of the tasks
- No further problems arised from these extra evaluations
- I'll finish the report in the next few days.

-2000 -1000 0 1000 200**0**