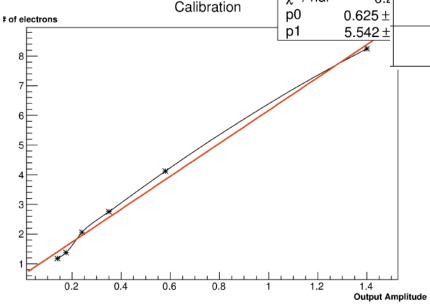
Uva GEM R&D Update

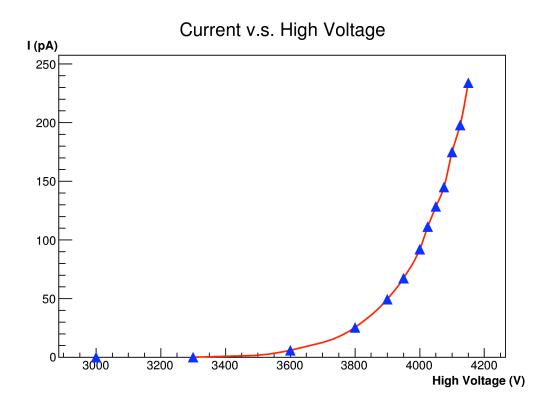

Kondo Gnanvo, Nilanga Liyanage, Vladimir Nelyubin

Status

- First chamber under testing now.
 - First chamber had a short in a sector, sector isolated, the rest of the chamber is OK
- Construction of second chamber complete, will be turned on soon.
 - Shorted sections discovered in two foils during construction
 - Bad Foil #1: 1 sector shorted -likely due to contamination during soldering
 - Bad Foil #2: 3 sectors shorted likely due to metal dust from the stretcher screws.
- Design for the modified prototypes completed; the order for the foils placed
- Italian APV readout system setup at UVa and is working well
- After the short with the 1st chamber and the shorts in the foils:
 - Writing operating procedures for chambers
 - Modifications to the stretcher
 - Modified construction procedure
 - Installed HV trip feature, at +1μA (over ~ 800 μA operating) current)

Chamber Gain Calibration

First calibrate the analog amplifier	Value of Capacitance	Total Charge (C)	# of Electrons	Output Signal (mV)	
	(pF)				
	3.3	1.32×10^{-12}	8.25×10^{6}	1400	
	1.65	6.6×10^{-13}	4.125×10 ⁶	580	
	1.1	4.4×10^{-13}	2.75×10 ⁶	350	
	0.825	3.3×10^{-13}	2.0625×10^{6}	240	
Calibration $ \begin{array}{c c} \chi^2 \ / \ \text{ndf} & 0.2 \\ \hline \text{p0} & 0.625 \pm 1 \\ \end{array} $	ררוו	2.2×10^{-13}	1.375×10 ⁶	175	
p1 5.542 ±	0.47	1.88×10^{-13}	1.175×10^{6}	140	



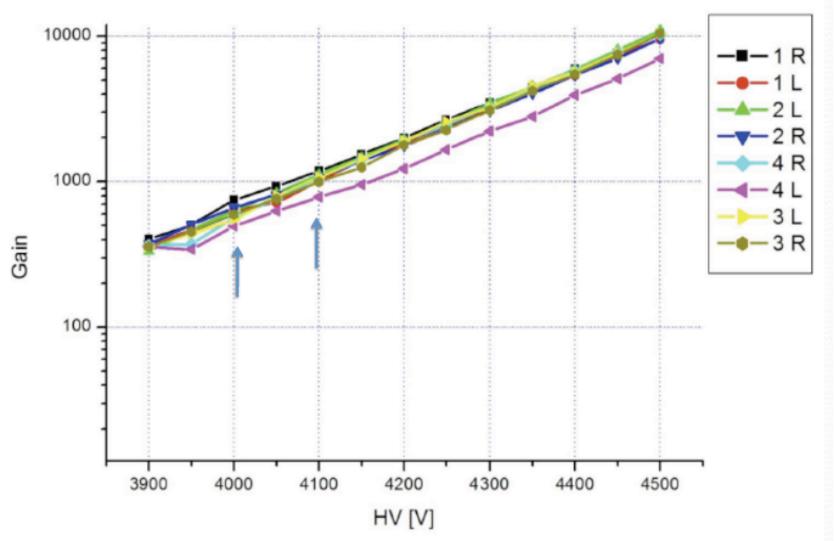
Chamber Gain Calibration

- Then measure the amplified signal (detected over 128 strips) from the 55Fe source
- 55Fe (5.9 kev photons) generate about 200 primary electrons.
- Use the calibrated amplified signal to calculate the gain.
- Cross calibrate the gains from the small prototype and the big prototype using the current measurement from the readout (from 128 stripes)
 - current measurement accuracy ~ 10 pA.

- : 1. Testing with β Source
 - 2. Picoammeter range was set to 2nA; Average per 100 counts.
 - 3. High Voltage: 4149.24V

Testing Results

		1			2			3			4			5	
	187			55			203			141			159		
-	188			58			205			147			160		
Α	190	188.1	188.3	62	58.1	58.3	207	205	205	149	146.6	145.7	162	160.1	160.3
	225			48			148			148			155		
	235			62			156			162			169		
В	242	234.7	234	85	62.9	65	174	157	159.3	195	163.9	168.3	180	168.7	168
	247			162			165			132			24		
	264			182			185			143			37		
С	282	264.1	264.3	206	182.4	183.3	207	185.2	185.7	170	144.6	148.3	46	36.6	35.7
	183			140			176			120			0		
	194			153			191			134			4		
D	216	195.1	197.7	174	153.8	155.7	214	191.8	193.7	169	136.1	141	16	4.8	6.7


Very preliminary results for gain calibration

Voltage	Gain
4150	1200
4200	1600
4250	2000
4300	2600
4350	3500
4400	4600

CMS Prototype Gain measurements with the divider

