

Update on the Gas Ring Imaging Cherenkov (GRINCH) Detector for A₁ⁿ using BigBite

SBS Meeting March 27, 2013

Todd Averett Department of Physics The College of William and Mary Williamsburg, VA USA

In collaboration with:

H. Yao, William and Mary B. Wojtsekhowski, S. Esp, Jefferson Lab A. Ahmidouch, S. Danagoulian, NC A&T K. Aniol, Cal. State LA J. Annand, Glasgow

Wiki: <u>http://wm-jlab.physics.wm.edu/mediawiki/index.php/Bigbite_Gas_Cherenkov</u> Email: <u>hyao@wm.edu</u>, <u>tdaver@wm.edu</u>

Motivation: High Rate Running

- Expect 4-5x increase in <u>total</u> luminosity over previous BigBite running.
- Assume 4-5x background rate.
- 30 degree scattering angle
- Segmented PMT array (29mm tubes), 9(8) x 60 tubes
- Search for timing clusters in 5-10 ns window.
- Magnetic shielding between rows.
- Locate PMT array on large angle side away from beam line.
- C_4F_8O heavy gas at 1 atm

Simulation and Design

- Design based on GEANT 4 simulation and geometric constraints from BigBite detector package
- 65 cm path length, 85 cm keep out
- Single reflection from cylindrical mirrors. Not focusing on specific PMT's, not sensitive to precise mirror geometry/alignment
- Clusters with avg 10 PMT's/event and 1.7 p.e.'s/tube

Electron and π efficiencies

Design Update

- First draft of design complete.
- Approval granted (Thia) to complete full production drawings to solicit bids
- Detector vessel made from frame of angled aluminum with sheet aluminum sides JLab
- 9 (8) x 60 array of PMT's in iron box, with mu metal and iron strips/bars between rows. Attach to vessel, removable. NC A&T
- Removable mirror frame, adjustable mirror mounting system. W&M

Design

Mirror Frame

Mirror alignment tests

Mirror

- Alignment of mirrors accomplished through multiaxis mount. Used for flat or curved mirror.
- Full scale prototype built and tested at W&M
- Cost estimate to make full frame and mounts at W&M is \$3-5k.

Results:

- Functionality of mount and adjustment is good.
- Lexan sheet is still very flexible; curvature n uniform (1/8" thickness).
- Several minor design improvements noted, mostly with vertical rod
- Concurrently developing laser alignment system.

Photon Detector Array

- □ Array of 9x60 29-mm PMTs
- Housed in an iron magnetic shielding box
- Each row is shielded at the front
 - by two adj. 1-mm thick plates (μ-metal and iron)
- Mirrorized plastic cones for light collection

Prototype: row of 9 PMTs + reflectors + Mag. Shi → in progress, testing → June 2013

Light Cones

• Aluminized plastic cones

Magnetic Shielding

• TOSCA simulations using mu-metal and iron plates between PMT rows.

Prototype (cont.)

1. Light reflector

2. μ -metal box

3. Prototype box with 1 mm bars

Prototype status (cont.)

PDA final design \rightarrow September 2013 PDA Assembly \rightarrow December 2013 Test of the PDA \rightarrow January – March 2014 (?)

Parts ready:

- a) magnetic shielding box and
- b) 1 mm steel bars, made of steel-1008
- c) µ-metal shielding box
- d) Light reflectors of correct size will arrive soon.

The reflectors and 1 mm steel bars will be sent for mirror deposition.

Mirror Reflectivity Tests

- Received sample of Al-coated Lexan, flat pieces, from ECI coatings.
- H. Yao measured reflectivity in test stand in FEL building.

Reflectivity Results

- Results not clean because:
 - System designed for mirrors that focus all reflected light onto a photodiode.
 - Doesn't work geometrically for flat mirror. Realignment of PD required during scans.

Continued Mirror Tests

- Will measure relative loss of reflectivity at several fixed wavelengths for a flat mirror that is then curved (flexed) to the proper radius. (W&M laser lab)
- Successful formed Lexan using custom made heated moulds. Not optical quality.
- Constructing a 1' x 1' mirror with honeycomb and Lexan backing (similar to Hall A design).

Front end Electronics

- J. Annand has produced phase II prototype of NINO front-end card.
- Successfully tested phase I card using signals similar to expected small-amplitude single PE signals from GRINCH.
- K. Aniol recently completed purchase for all NINO cards.

Plans

- Finish production drawings for vessel, mirror mounting, May 31st, 2013
 - Send drawings for quotes
 - Fabrication, Summer 2013 (need Jlab approval)
 - Assembly, Fall 2013
 - Testing, late 2013
- Finalize mirror design studies by April 30th
 - Order mirrors in summer.
- Other summer projects
 - Gas system
 - Mirror alignment system
 - Cables
 - Gain matching studies using rates/timing??
 - HV distribution system