Thoughts on the use of gemc for SBS+BB Monte Carlo

Andrew Puckett
SBS Weekly Meeting
June 19, 2013

gemc—what is it?

- gemc is a "full-featured" GEANT4 application and software framework for the simulation of arbitrary detector geometries
- Philosophy is to minimize interaction of the end user with the source code—detector geometry is built from a database at runtime—facilitates rapid development and deployment, contributions from multiple developers
- (Almost) completely general detector simulations can be built without recompiling the source code—there are several exceptions to this, but most will be eliminated in the near future
- Primary author and lead developer—M. Ungaro, Hall B staff scientist
- Documentation and installation instructions: https://gemc.jlab.org/gemc/Home.html
- Adopted collaboration-wide as the GEANT4 simulation framework for CLAS12 spectrometer in Hall B

CLAS12 in GEMC

Hall A SoLiD Simulation

Detector construction example: CLAS12 High Threshold Cherenkov Counter

HTCC Geometry: Mirrors

Mirror is divided in 12 φ and 4 θ segments—ellipsoids intersect in planes allowing full solidangle coverage with no gaps/shadowing

6/19/2013

HTCC Geometry: Mirror back surface

To simplify construction/assembly, mirror back surfaces have a common "barrel" geometry—obtained by revolving a circle about a chord that is not a diameter

Slide 7

Building the HTCC Mirrors in gemc

- Complicated geometry cannot be built from standard GEANT4 solids alone: requires standard solids AND Boolean operations:
 - Solids: Tube, Cons, Polycone, Ellipsoid, Box
 - Operations: Subtractions and Intersections
 - Mirror back surface (surface of revolution of a circle about a chord that is not a diameter) cannot be described with standard GEANT4 solids; requires approximate description using "polycone"
 - Mirror segments are divided by planes, necessitating additional Boolean operations.
 - Procedure for Mirror #1 outlined below (mirrors 2/3/4 similar)

Step 1: Ellipsoid w/placement

Step 2: Barrel w/placement

Step 3: Barrel and Ellipsoid w/placement

Step 4: Subtraction of Ellipsoid from Barrel

Step 5: (Barrel – Ellipsoid) - Box (Mirror #1/#2 Step 6: (Barrel – Ellipsoid – Box – Cylinder) (outer dividing plane) edge at θ =35°)

Step 7: Intersection w/ cylindrical wedge (phi section)

Final Mirror #1

HTCC geometry in gemc

All Mirrors shown with PMTs (only windows are included) and Winston Cones (paraboloids), gas volume not shown

6/19/2013

An electron in HTCC

What is defined via the database

- All geometry:
 - solids, logical volumes, positioning, rotations
- Type of detector sensitivity, type of detector hit (this determines what hit process routine is performed at run-time), time window to integrate hit information, etc.
- Magnetic field
- EVIO or text output bank structure

What is still hard-coded

- Presently, all material definitions/properties are still mostly hard-coded in gemc
 - Building material definitions from the database coming soon in the release of gemc 2.0
- "Hit Process"/digitization routines: algorithms for generating hit/signal information for sensitive detectors need to be coded; many general-purpose examples exist already
 - Which "hit" routine is called for any given sensitive detector is defined/chosen via the database.
 - Existing routines can be used/re-used, or new can be developed (but this requires re-compilation of the source code)
 - This is likely to remain hard-coded—very difficult to make this sufficiently general outside the source code

Full CLAS12 simulation

A high-Q² ep→ep event in CLAS12 with full detector package/magnetic field, etc.

• CLAS12 acceptance simulation from gemc for electrons; Q² vs. phi for ep→ep

HTCC materials/optical properties in gemc

- HTCC optical properties:
- 1. Transparency of CO₂
- 2. Mirror reflectivity with AIMgF₂
- 3. Cherenkov spectrum (dN/d $\lambda \sim 1/\lambda^2$)
- 4. PMT Quantum efficiency with quartz window
- 5. PMT Quantum efficiency with UV-glass window

5/19/2013

GEMC HTCC Simulation Results

- Top left: *Total* number of photoelectrons per event in gemc
- Right: Momentum dependence of ph.e. yield for electrons (top) and pions (bottom)
- evio output converted to ROOT trees for further analysis

Use of gemc for SBS+BB

Advantages:

- Easy to develop even complicated detector geometries via easy-to-learn, easy-to-use Perl/MySQL database interface—quick learning curve for students/post-docs
- Comprehensive and general physics lists available
- Many materials already defined, common "hit" algorithms exist
- Don't need in-depth knowledge of C++/GEANT4 libraries (but of course it helps)—reduce overhead of coding the entire application environment
- Avoid reinvention of wheel with multiple codes/application environments floating around with various parts of detectors
- Long-term code management/development/support by Hall B staff
- Multiple users/designers can contribute simultaneously, build up the geometry of all detectors/magnets/beamline in a single, central database
- Use of common framework with Hall B and others—develop, share and benefit from expertise and experience of others; support ease of use in post-upgrade JLab computing environment
- Very good documentation exists w/lots of tutorials/examples

Use of gemc for SBS+BB

• Disadvantages:

- Managing different versions of detector geometry is currently not straightforward; a single database, often overwritten w/changes; hard to know what configuration was actually used when the geometry is changing often—what event generator, what parameters, etc...
- Database structure is not necessarily conducive to "two-arm" experiments typical of Hall A; with multiple spectrometer angles/positions in a single experiment.
- Could become problematic w/ customizable, "modular" spectrometers as in SBS/BB
- My view—these pitfalls are relatively minor, solutions are already being developed, and the benefits far outweigh the disadvantages

Summary and Conclusion

- gemc framework developed for GEANT4 simulations of CLAS12 has proven very powerful and flexible, so much so that several other large experiments/collaborations have adopted it
- This could be exploited to develop the Monte Carlo for BigBite and SuperBigBite
- Given what already exists, is it necessary?
- Monte-Carlo coordinator needed—should be long-term collaborator
 - Organize efforts of collaborators/students/postdocs in collecting geometry info
 - Interface with designers/engineers
- If we adopt geme as simulation framework; need to think about how to interface with reconstruction code—Hall A analyzer.
 - Output is EVIO—same format as Hall A DAQ
 - Bank structure may be different
 - Possible to write gemc "digitized" output in same format as Hall A raw data format?

