Update IDEA for a measurement of the Pion Structure Function using SBS, LAC, BONUS-like rTPC, BigBite, in Hall A

Small working group formed....(thanks!!)

J. Annand, A. Camsonne, E. Christy, D. Dutta, P. King, J. LeRose, R. Lindgren, J-C Peng, P. Reimer, J. Roche, B. Wojtsekhowski, J. Zhang – *feel free to join!*

- Have had two working meetings
 - Talks available on SBS web page
 - Basics luminosity (target), rates, backgrounds, simulation
 - Physics generator and simulation development
- Seeking theory guidance
 - Idea presents multiple opportunities, a program
 - Informal local meeting in ~couple weeks
 - January 16-18 workshop

Motivation in a Nutshell - a reminder

(see also See also <u>http://www.ectstar.eu/node/95</u> ECT workshop July 2013, "Flavor Structure of the Nucleon Sea"

• A.W. Thomas, Phys. Lett. 126B (1983) 97-100: "... it is rather disturbing that no one has yet provided direct experimental evidence of a pionic component in the nucleon."

"A Limit on the Pionic Component of the Nucleon through SU(3) Flavor Breaking in the Sea"

- Pion is the simplest hadron with only two valence quarks.
 - multiple theory predictions, QCD testing ground
- Knowledge of the pion structure function is <u>very limited</u> due to the lack of stable pion target.
 - some Drell-Yan data at moderate x and HERA data at low x
 - compare to 5+ orders of magnitude in x, Q² measurements of nucleon structure function at DESY, SLAC, NMC, BCDMS, JLab,....
- Many questions, for instance what is the origin of the d(bar) u(bar) flavor asymmetry?
 - asymmetry in anti-quarks generated from pion valence distribution?
- The pion exchange (Sullivan) process can be used to measure the pion structure function.
- This experiment can, more generally, measure the "mesonic" contribution to DIS (~50% according to Kopeliovich.....)

Educated guess

15

 $\mathbf{R}_{\pi/\mathbf{p}}(\mathbf{x},\mathbf{Q}^2) = \mathbf{F}_2^{\pi}(\mathbf{x},\mathbf{Q}^2)/\mathbf{F}_2^{\mathbf{p}}(\mathbf{x},\mathbf{Q}^2) = ?$

The small q-qbar dipole, $\gamma^* \to \bar{\mathbf{q}}\mathbf{q}$, is a good counter of valence quarks, so one could (naively) expect $\mathbf{R}_{\pi/\mathbf{p}}(\mathbf{x}, \mathbf{Q}^2) = \frac{2}{3}$

However, the proton has a considerable pion component: $\mathbf{p}
ightarrow \mathbf{N}\pi$

Т

It can be evaluated relying on the observed deviation from the Gottfried sum rule:

$$\mathbf{R}_{\pi/\mathbf{p}} = rac{\mathbf{2}}{\mathbf{3}+\mathbf{2}\langle \mathbf{n}_{\pi}
angle}$$

DY E866: $\langle n_{\pi} \rangle = 0.36$ NMC: $\langle n_{\pi} \rangle = 0.44$ HERMES $\langle n_{\pi} \rangle = 0.48$

G. Garvey & J.-Ch. Peng, Prog.Part.Nucl.Phys. 47(2001)203

Adding the poorly known contribution of the iso-scalar mesons, our guess is

16

$$\mathbf{R}_{\pi/\mathbf{p}} = \frac{\mathbf{I}}{\mathbf{2}}$$

IVERSIDAD TECNICA

B. Kopeliovich, Trento, July 4, 2013

Sign change of $\overline{d}(x) - \overline{u}(x)$ at $x \sim 0.25$? (or $\overline{d}(x) / \overline{u}(x) < 1$ at $x \sim 0.25$?) Why is it interesting? (no models can explain it yet!)

Meson cloud model

Chiral-quark soliton model

Statistical model

From Alberg's talk

From Wakamatsu's talk

From Soffer's talk

J-C Peng, Trento 2013 workshop

Pion Exchange (Sullivan) Process -DIS from the pion cloud of the nucleon

|t| has to be small to enhance contribution from Sullivan process. Think about both hydrogen and deuterium

p(e,e'p)X n(e,e'p)X

- Charged pion exchange has less background from Pomeron and Reggeon processes, ρ^{0} production.
- The π^+N cloud doubles π^0N cloud in the proton.

$$\begin{split} |p> &\to \sqrt{1-a-b}|p_0> \\ &+ \sqrt{a}\left(-\sqrt{\frac{1}{3}}|p_0\pi^0> + \sqrt{\frac{2}{3}}|n_0\pi^+>\right) \\ &+ \sqrt{b}\left(-\sqrt{\frac{1}{2}}|\Delta_0^{++}\pi^-> - \sqrt{\frac{1}{3}}|\Delta_0^{+}\pi^0> + \sqrt{\frac{1}{6}}|\Delta_0^0\pi^+>\right) \end{split}$$

Regge approach: a=0.105, b=0.015 Nikolaev et al.,PRD60(1999)014004

Chiral approach: a=0.24,b=0.12 Thomas, Melnitchouk & Steffens,PRL85(2000)2892

So, what to measure...?... Inclusive DIS from a *pion* target

First, what kind of luminosity is possible?

- Small cross sections, need to do better than CLAS12/BONUS
- Detectors near target, Moller background
- SBS and BigBite (not limiting factors)

Target cell

- The luminosity of 1 x 10^{37} nucleon/cm² is the goal - Assuming beam intensity of 50 μ A => 3.1 x 10^{14} e/s

The cell diameter? 10 mm in Tritium 25 cm long cell: use 10 mm

- Use a kapton film, which contributes 2/3 of the total mass: 15 micron corresponds to 2 mg/cm²
- Kapton strength 22100 psi => 1500 atm Such 15 micron tube can hold the pressure of t/r x s = 15/5000 x 1500= 4.5 atm

Mass: 5 / 250 (radius/length) for 1/50 x 3 x 10²² = 1 mg/cm²

Such a density (2 mg/cm³ ~ 1/36 of LH2) => 25 K, p= 2 atm

The RTPC in Geant4 Simulation

Using the exist RTPC Geant4 simulation program, geometry was built exactly for BoNuS experiment.

Optimize Threshold								
Set #	Target P. (ATM)	Target Temp. (K)	Target D. (mm)	Target Wall (um)	He4 P. (ATM)	Threshold, Smax<35 theta=90°	Threshold, Smax>55 theta=90°	Threshold, Smax<35 theta=30°
1	7.5	300	6	50	1	66	70	80.5
5	7.5	300	6	30	1	59.4	64.8	74
6	7.5	300	6	20	1	55.7	61.3	72
11	7.5	80	6	20	1	59.3	64.6	75
12	4.5	80	6	20	1	57.9	63	72
13	7.5	80	5	20	1	59.3	64.6	74.8
14	7.5	80	4	20	1	59.2	63.8	73.6
15*	7.5	80	6	20	No both mylars	55.6	61.0	70
16	7.5	80	6	20	No 1 st mylar	57.5	63.0	71.8
17*	7.5	80	6	20	Drift Region 25-60	59.3	64.6	75

To change the cathode layer from 30 mm to 25 mm, one needs to study moller background ...

University Recoil Proton Spectrometer: Radial-Field TPC

Gas H_2/D_2 Target, 25° K, 2 atm Container 15 µm Kapton 400mm long × 20mm Ø $I_e = 50 \mu A$, $L_N \sim 10^{37}$

He gas 25° K, 0.1 atm Ring of 100 12.7 μ m W wires Divides He volume in 2 r = 5 - 100mm, r = 100 - 200mm

Outer cylindrical GEM No detail coded yet

- 2 T longitudinal magnetic field assumed uniform
- Or TOSCA generated field map (B. Wojtsekkowski)

9th September 2013

Energy Deposit Profile Comparison

- Uniform magnetic field varied from 0.5 to 2.0T
- Close to the beam axis the region of significant energy deposition definitely shrinks
- Further from the beam axis the background does not reduce
- Still to quantify how serious this backgroud is and its source

9th September 2013

Recoil Tagging Update-1, JRMA

Move target upstream for forward proton detection, or make full rTPC length target?

Perhaps increase drift region for improved momentum resolution – or improved GEM readout may accomplish this already?

Thinner-walled straw target also possible

Need to detect "single arm" high E electrons (so as to get to high W, Q² DIS kinematics)...

Super Bigbite

SBS + LAC

Using the SBS for electron detection:

- Replace Hadron Calorimeter with LAC
 - Similar sizes (5.5 m² vs 8.7 m²)
 - Place the LAC as far back as possible to match the solid angle.
 - Improves angular resolution
 - Improves e/pi TOF separation
- Remove CH2 proton analyzers

Thick

The Large Angle Calorimeter (LAC)

We recovered this detector from CLAS6 - stored under cover

Super Bigbite PID LAC details

- Each detector has 33 layers of material. 12.9 Radiation lengths
- 0.20 cm lead , 0.02 cm Teflon , 1.5 cm thick scintillator with 10cm width
- every other layer the scintillator orientation is rotated by 90°

BigBite as an electron arm, E02-013

Bogdan Wojtsekhowski

Next, how to detect protons? (a reminder)

- Want low momentum protons closer to low t, pion pole
- Difficult to detect!
- Measure range in momentum to extrapolate possibly?
- Best to measure range and at low momentum

Plot from E. Christy

BONUS was a Standard Inclusive Fixed Deuterium Target Electron Scattering Experiment, with a Tagged Spectator Proton to Ensure the Electron Scattered from the Neutron

-Suggest use this approach!

Spectator Proton Detector Features

- Low momentum spectator must escape target
 - Thin deuterium target
 - Low density detector media
 - Minimal insensitive material
- Large acceptance
 - Backward angles important
 - Symmetric about the target
- Detector sensitive to spectators, insensitive to background

The BONUS approach to create neutron target

Within the nuclear impulse approximation. The virtual photon interacts with the neutron on a short enough time scale that the proton doesn't know what happened. The spectator continues on unperturbed w/ momentum $\mathbf{p}_s = -\mathbf{p}$

Unlike BONUS, though....

 Need range of electron angles solenoid in the way

New magnet or magnet design (Bogdan)?

 Also...may need <u>forward</u> angle, low p proton detection

Longnuumai Fielu (5). Fusii it ivias

Do we have enough rate for a good experiment?....

Process used in the model

- Generate a real proton, virtual neutron pair from an at-rest deuteron
- Generate a real proton, virtual pion pair from the neutron with the proton carrying momentum fraction, *z*, and transverse momentum, p_{τ}
- Calculate the en \rightarrow e'p'X cross-section using $\frac{d\sigma(en \rightarrow e'p'X)}{dx_{Bj}dQ^2dzdp_T^2} = f_{p\pi/n}(z, p_T^2)\sigma_{\pi}(x_{Bj}/(1-z), Q^2)$

Paul King

September 9, 2013

Assumptions and ranges

- Use a luminosity of 1.0e37 cm-2s-1 --> (1.0e10 mbarn-1s-1)
- Parameter ranges
 - Q2, 1.0 5.0
 - X_A, 0.001 0.5
 - P_T, 0.0 1.0
 - Z, 0.0 1.0

Paul King

September 9, 2013

Cuts

- $0.05 < P_p1 < 0.50$
- 90deg < Th_p1 < 165deg</p>
- $E_e > 0.25$
- 5deg < Theta_e < 30deg</p>
- |t_pi| < 0.2
- x_pi < 1.0
- Rate:

Sum(sigma)*(Parameter ranges)*L/N_gen ~ 100 Hz

Proton parameters vs rate

September 9, 2013

Rates vs Q2 at Various x Bins

0.1<x<0.5 @ 6.7 G(blue) : 8.9 G(red) : 11.1 G(black)

0.5<x<0.8 @ 6.7 G(blue) : 8.9 G(red) : 11.1 G(black)

Pion on-shell model (Jixie Zhang) – agrees with Paul's physics generator!

Reminder 1: one potential major plus using SBS++ as compared to CLAS12.... (besides running a lot earlier)...

Move Hadron Calorimeter to different angle use for rTPC *calibration*, facilitate real cross section measurement

HCAL on separate, moveable stand – here replaced in SBS by LAC – move and use for elastic neutron detection!

- Deuterium target in rTPC
- Electron-neutron *elastic scattering*
- Electron detected in SBS or BigBite
- Neutron detected in HCAL
- There MUST be a spectator proton! So.....
- Measure rTPC (spatial) efficiency
- Maybe also momentum calibration
- Neutron form factor for free

Other (potential) pluses of this program

- Actually get F_2^n/F_2^p for free if make full length target for deuterium run
 - Pion structure function requires one forward angle + one backward angle proton
 - F_2^n requires just one backward angle proton
 - Maps Sullivan contribution to F_2^n
- Can vary target density check lower p, also raise to get more rate....complementary data, requires planning

Other physics - this could be an exciting program for SBS:

- Deuteron target pi-structure function
- Proton target pi⁰ structure function
- Possibility of low momentum neutrons for pi+ too (R. Lindgren), stay tuned!
- Deuteron target F_2^n
- Detect also pion to measure pion form factor at pole (excellent complement to Hall C L/T)
- DVCS (detecting proton in coincidence should remove ~15% background from (e,e' Δ) γ , (e,e' π) γ ,...) neutron, pion DVCS!
- Helium target SRC experiments?
- Look for Lambda -> p pi- decay to measure p -> K+
 Lambda kaon cloud of the nucleon??

Conclusion: Still lots of work to do, but looking increasingly like a doable and promising program for SBS:

- Most equipment exists, needs only modifications
- Can get \perp to ~2 x 10³⁷
- Can reduce $p_{spectator}$ to ~ <60 MeV/c
- Rates ~100Hz

Other Useful Slides

Pion Structure Function

$$\pi^- W \to \mu^+ \mu^- X$$

$$\sigma \propto \bar{u}(x_{\pi^-})u(x_N)$$

Pion structure function is not well measured, although pion is the simplest hadron with only two valence quarks....would like, for instance range in x, Q²

The x_p ->1 behavior of $(1-x_p)$ in Drell-Yan data differs from pQCD prediction of $(1-x_p)^2$.

Pion Structure Measurement at HERA

Need Low Momentum AND Large Angle for Spectator

