ECAL for GEp/SBS

B. Wojtsekhowski

Electron Calorimeter for GEp

Performance Requirements

Function: Detect 4 to 5 GeV Electrons

• Energy resolution: $\sigma/E \sim 10\%$ for 3.5 GeV electrons

Spatial resolution: 6-8 mm

(2 mm with upstream coordinate detector)

• Full luminosity: 8 10³⁸ Hz/cm²

Trigger: Overlapping segments correlated with the proton

Trigger at 75+% of elastic peak

BigCal for GEp experiment

Used in Hall C GEp3

Reconfigure

92 blocks

48+34+10 =

- ECAL-SBS
- Configuration: (960 + 714 + 220) = 1894 blocks 20-22 blocks
- Block size: 4.2x4.2x40, 4x4x40, and 3.8x3.8x45 cm³
- Area: $0.84 \text{ m x} (2.02+1.36+0.38) \text{ m} = 3.75 \text{ m}^2$

BigCal for GEp experiment

All transmission studies were performed for the wave length of 405nm

Figure 5: Transmission coefficient of $4\,\mathrm{cm}$ of lead glass as a function of wavelength for various amounts of radiation. Estimated errors are 2% (10%) for wavelengths above (below) 380 nm.

Fig. 4. The absolute quantum efficiency of three FEU-84-3 phototubes as measured by Hamamatsu Inc. using a calibrated source. Three tubes were selected, using the method described in the text, as having relatively high, medium and low relative quantum efficiencies.

The scheme under investigation

0.008x7x130/15 = 0.6 W heat through light guide

The scheme under investigation

- Dow Corning OE-6630, 200 C, need test for 250 C
- Optical epoxy 353NDPK, 200 C, need to test at 250 C
- TRA-bond F202: clear epoxy: strong and good up to 250 C
- Frit bonding, can be used also

The dark current experiment

The dark current experiment

The dark current experiment

Conclusion:

At temperature 250 C of the lead-glass the PMT anode current is of 28 nA which is 1/10 or less of the projected beam induced anode current.

Hall D report

Figure 4.4 shows the transmission of light, at $\lambda = 410$ nm, through 4 cm of lead glass as a function of distance along the bar for a radiation-damaged bar before and after heat curing at 260 °C. The z=0 position corresponds to the upstream end of the bar during data taking, *i.e.* the end of the bar closest to the source of the photon beam.

Figure 4.4: Transmission of light, at $\lambda = 410$ nm, through 4 cm of lead glass as a function of distance along the bar for a radiation-damaged bar before and after heat curing at 260 °C.

The ECAL blocks under heat treatment

Three measurements of the PD current: I0 = intensity direct; I1 - intensity through clear area; I2 - intensity through yellow area. $I_1(calc) = I_0*0.88*0.93$. Abs= $(I_1-I_2)/I_1$

#	Rad or T, C / time	type	I _o	l ₁	I ₁ /calc	l ₂	Absorb	comment
8	135 Gy	42	3.06		2.50	0.90	64%	
8	250 / 1	42	3.03		2.48	2.45	1.2%	
3	131 Gy	42	3.26			1.03		
3	225 / 1	42	2.90		2.37	2.31	2.5%	
2	130 Gy	42						
2	200 / 1	42	1.76		1.44	1.33	7.6%	
Α	80kRad?	42	2.68			0.07		
Α	225 / 1	42	2.53	2.06	2.07	1.95	5.3%	
В	80kRad?	40	2.61			0.05		
В	225 / 1	40	2.61	2.14	2.14	1.86	13%	
С	80kRad?	38	2.66	2.20	2.18	0.48	78%	
С	150 / 4	38	2.57	2.19	2.10	1.8	18%	

Mechanical stability of the glass bar

275 C for 20 hours

weight on the lever 20 kG x 10 (lever) over 16 cm²

Effective time is 250 hours of 3 m tall calorimeter

Non flatness in local area is below 5 micron

To do for M200

- 1. 500 hours study of the optical coupling (NCCU, in progress)
- 2. \$8.5 light guides (UVa, 50 are ordered)
- 3. design of the back heater (UVa, done) needs to be ordered
- 4. test of the LG cooler (Jlab, June)
- 5. design of the gluing fixture (Jlab, in progress)
- 6. design of M200 (will start soon)

A scheme of M200

The items to do for ECAL

1. Components

- Lead glass blocks
- ii) **PMTs**
- iii) **HV** bases
- Front-end electronics
- Cables (signal and HV)
- vi)
- **HV** supplies
- vii) Fastbus system
- viii) NIM electronics

There are progress last month

2. Thermal annealing

- Measurement of the dark current
- ii) Irradiation of 8 blocks/ISU and more/RadCon iii)
 - Optical bond technology
 - Mechanical stability at 275 C (eff. 250 hours)
 - Annealing tests at 275, 250, 225, 200, 150 C
 - Design of the 10% prototype (M200)
- vii) Budget of M200

iv)

v)

vi)

- Construction of M200 viii)
- ix) M200 test in Hall A in the fall of 2014

The milestones for ECAL

- 1. July 2014: Develop concept of annealing, float is 2 months
 - i) Test
 - ii) Design
 - iii) Budget
- 2. May 2016: ECAL electronics is ready, float is 6 months
 - i) Inventory
 - ii) Design
 - iii) Construction
 - iv) Test
- 3. Sept. 2017: ECAL is ready for GEp5, float is 9 months
 - A) Design
 - B) Budget
 - C) Construction
 - D) Test