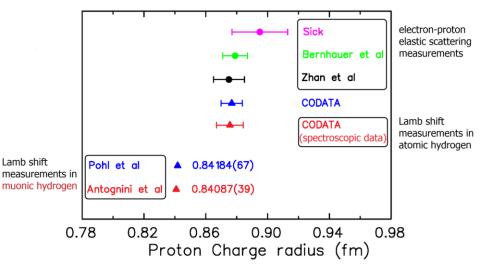
Update on the Large GEMs for PRad Experiment in Hall B

Kondo Gnanvo


University of Virginia, Charlottesville, VA

Outline

- ✓ PRad GEMs & Readout Electronics
- ✓ Preliminary results from the experiment run

The PRad Experiment @ JLab: $ep \rightarrow ep$ Scattering

Proton Radius puzzle

Specifications for PRad Experiment

- Non Magnetic spectrometer
- High resolution and high acceptance calorimeter ⇒ low scattering angle [0.7° - 3.8°]
- Simultaneous detection of ee → ee (Moller Scattering) ⇒ minimize systematics
- High density windowless H₂ gas target
 ⇒ minimze background
- clean CEBAF electron beam (1.1 GeV & 2.2 GeV)
 ⇒ minimze background

PRad Experiment (E12-11-106):

- High "A" rating (JLab PAC 39, June 2011)
- Experimental goals:
 - Very low Q² (2×10⁻⁴ to 4×10⁻²)
 - 10 times lower than current data @ Mainz
 - Sub-percent precision in <r_p²> extraction

The Proton Charge Radius from $ep \rightarrow ep$ Scattering Experiments

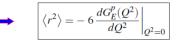
 In the limit of first Born approximation the elastic *ep* scattering (one photon exchange):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon}G_M^{p\,2}(Q^2)\right)$$

$$Q^2 = 4EE'\sin^2\frac{\theta}{2}$$
 $\tau = \frac{Q^2}{4M_p^2}$ $\varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta}{2}\right]^{-1}$

Structure less proton:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \frac{\alpha^2 \left[1 - \beta^2 \sin^2 \frac{\theta}{2}\right]}{4k^2 \sin^4 \frac{\theta}{2}}$$


- G_E and G_M were extracted using Rosenbluth separation (or at extremely low Q² the G_M can be ignored, like in the PRad experiment)
- The Taylor expansion at low Q²:

$$G^p_E(Q^2) = 1 - \frac{Q^2}{6} \langle r^2 \rangle + \frac{Q^4}{120} \langle r^4 \rangle + \dots$$

р

(r.m.s. charge radius given by the slope

A. Gasparian

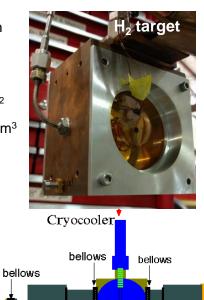
CLAS col. meeting, 2015

G_F,G_M

The PRad Experimental Setup in Hall B

Target specs:

- cell length / diameter 4 / 8 cm
- cell material 30 µm Kapton
- input gas temp. 25 K
- target thickness 1x10¹⁸ H/cm²
- average density 2.5x10¹⁷ H/cm³

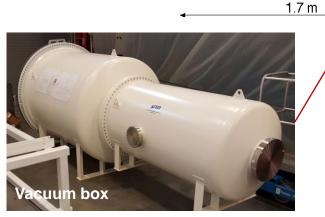

Collimator

2H00 Harp

Cell pressure 0.6 torr

Tagger

 Vacuum in target chamber ~5x10⁻³ torr



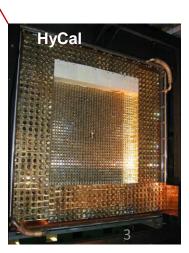
GEMs:

- factor of >10 improvements in coordinate resolutions, similar improvements for Q²
- unbiased coordinate reconstruction (transition region), increase Q² range by including Pb-glass

1.7 m

1.5 m

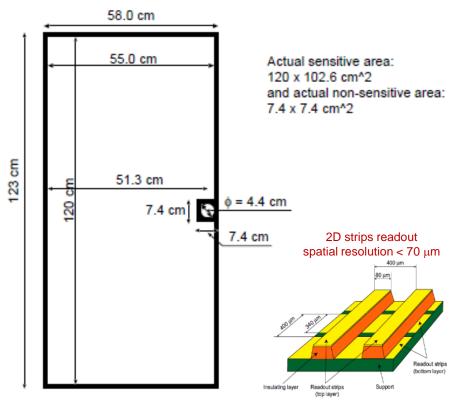
HyCal specs:

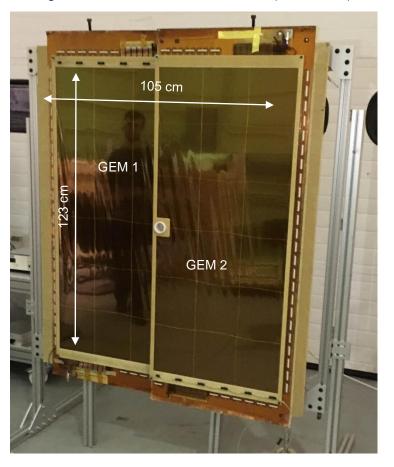

- 34 x 34 matrix of 2.05 x 2.05 x 18 cm³ PbWO4
- 576 Pb-glass shower detectors (3.82x3.82x45.0 cm³)

5.0 m

New cylindrical vacuum box

- 5.5 m from H₂ target (~0.5 sr acceptance)
- Resolutions for PbWO4, $\sigma/E = 2.6 \%/\sqrt{E}$, $\sigma_{xy} = 2.5 \text{ mm}/\sqrt{E}$
- Resolution for Pb-glass shower factor of ~2.5 worse


SBS Weekly. Meeting @ JLab, 06/15/2016

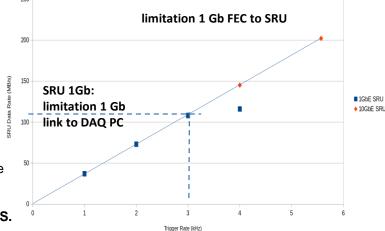

GEMs

PRad GEMs: Design & Specifications

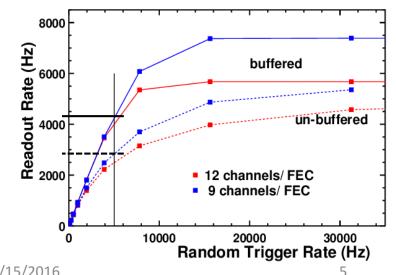
Desired Sensitive area: 116.4 x 116.4 cm² central hole: diameter 4.4 cm, including the frame max allowed maximum allowable non-sensitive region 7.8 x 7.8 cm²

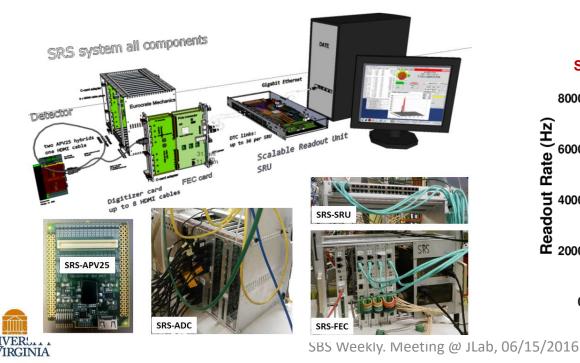
Two modules mounted on the holding frame Prad GEM configuration before the cosmic run in EEL (March 2016)

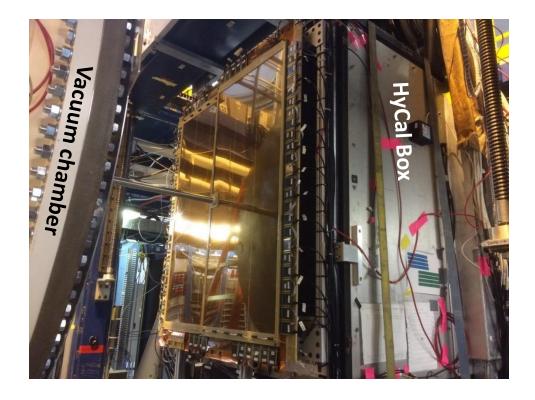
- Largest GEM module ever built in the world
 - Each module is twice the size of SBS Back Tracker GEMs (123 cm x 55 cm)
- Two modules overlap in the for the alignment of the beam pipe hole
- COMPASS-like strip readout (1.3 m long strips in the vertical direction


 ⇒ capacitance noise still OK

Upgrade of APV25-SRS Electronics for PRad GEMs


Hardware:


- 72 SRS-APV FE cards (36 per GEMs) ⇒ total of 9184 channels to read out
- 8 SRS-ADC / SRS-FECs with 9 APVs cards each, 3 time samples
- 2 SRS-SRUs to collected the data from the FECs
- 2 CODA PC with TIpcie: Interface the SRS electronics into JLab DAQ (CODA)
- Firmware
 - Upgrade of the Link SRU to DAQ to 10 Gb,
 - FEC firmware upgraded to handle buffering trigger and busy mechanism
 - The upgrades allow the SRS to perform at a rate of 5kHz with less than 15% dead time
- Software
 - Integration of the SRS into CODA and implementation of the online zero suppression (S. Boiarinov, JLab & X. Bai, UVa)
 - Development of online Monitoring for the GEM data (Weihzi Xiong, Duke U.)


SRS-FEC firmware upgrade: Trigger buffering

SRS-SRU firmware upgrade: 10 Gb link implemented

Installation on the PRad Expriment in Hall B

SRS crates underneath HyCal Box

Calibration run: Efficiency of the GEMs

(Xinzhan's preliminary analysis)

- Dedicated time for GEM efficiency measurement during HyCal calibration run
- · Small portion of the photons from the photon tagger converts into e- in the small scintillators just in front of the GEMs
- Trigger from the scintillator, Scan several spot on both chambers
- Offline matching of the timing in the scintillator and the HyCal hits to clean up the events in GEMs
- efficiency > 95 % measured at different spots on each of the two GEMs

Scin. Timing cut

7800 - 8100

3000

1500

1000

6 33783 0.8217 0.2916

pRadGEM1_X Cluster Dis

10000

8000

4000

2000

HyCal Timing cut

7150 - 7550

1000

pRadGEM1_X Cluster Size

pRadGEM1_Y Cluster Dist

Entries 22060

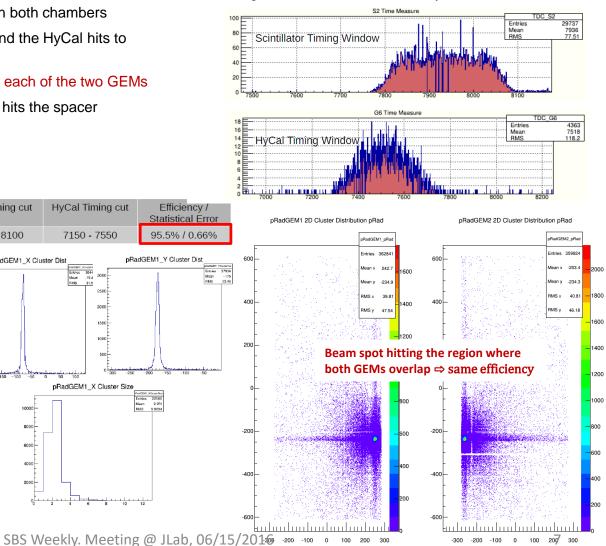
2.281

efficiency drops a few % when beam spots hits the spacer

GEM Events

21069

pRadGEM1X side Cluster ADC


400 600 800 1000 1200 1400 1600 1800 2000 2200 pRadGEM1 Charge Ratio 1D

More data still need to be analyzed

Efficiency = N gem / N tot

N gem: hits on GEM N tot: hits on both scintillator and HyCal.

Use Timing Cut to select hits from Scintillator and HyCal.

GEM

HyCal

Scintill

Vacuum

Photon Bean

In Match with HyCal Position: W274

ries 337K -74.17

After-cut events

22069

700Ē

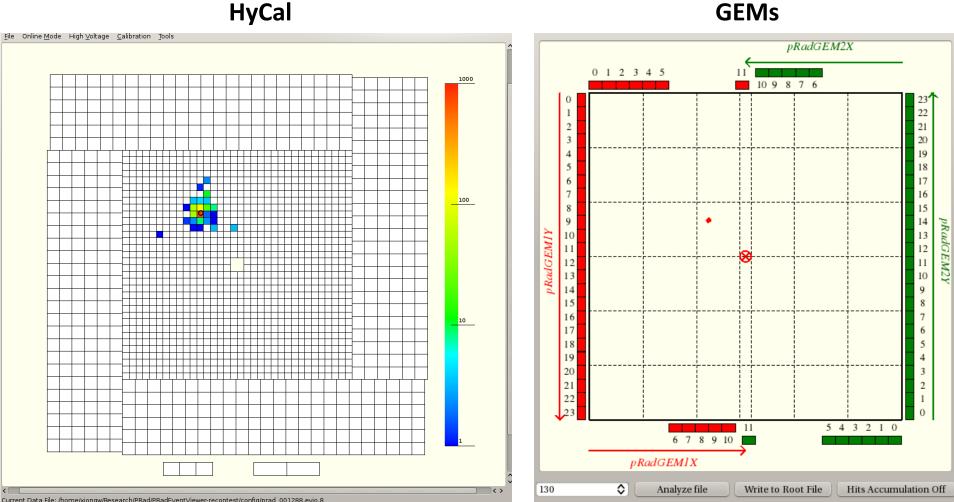
Total Events

240819

RadGEM1 2D Cluster Distribution pRe

համավասհամավում 300 -200 -100 0 100 200 300

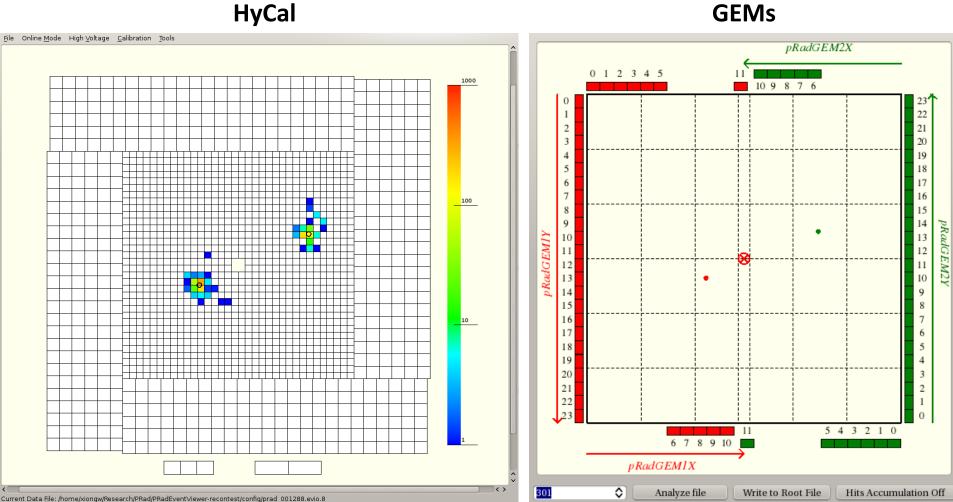
PRad production run program


DAQ Performances

- With a 1.1 GeV beam @ 15 nA trigger rate ~ 3.8kHz and 87% live-time.
- Successfully tested the online zero suppression during calibration run phase
- Data rate ~400 MB/sec without APV data online zero suppression (production run)
 - However, the trigger rate not affected by APV25 raw data size and we have enough disk space ⇒ so
 production runs are without online zero suppression
- Reached production goal for 1.1 GeV beam on Hydrogen.
 - Over 500M events collected, about 25-30% are background and over 50M events with empty target.
 - GEM chambers with the SRS electronics ran flawlessly
 - Just start the production run at 2.2 GeV (Until June 21st)

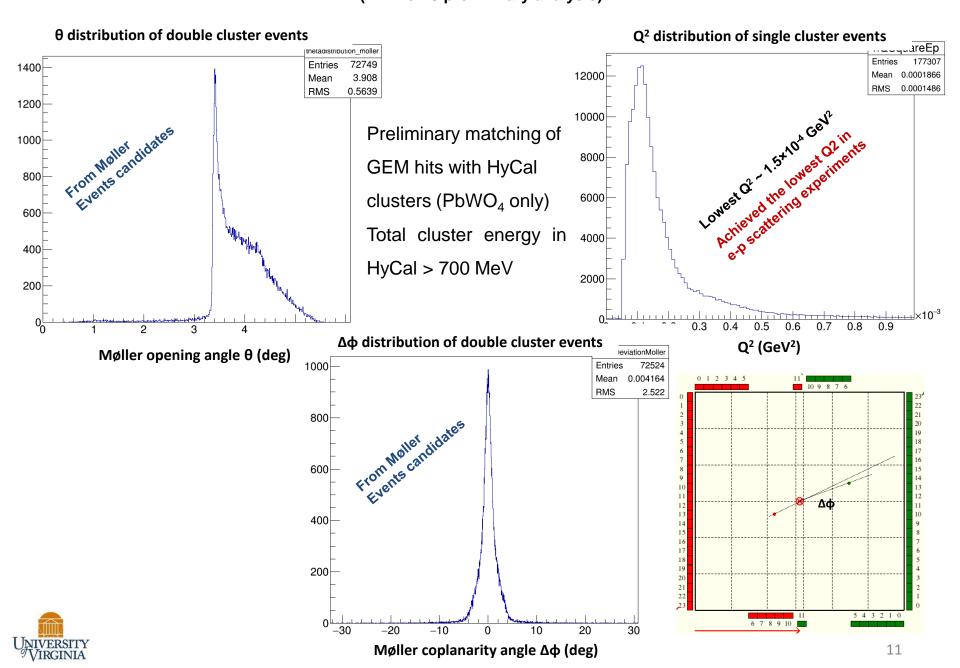
1.1 GeV Production run: Online event matching between GEM and HyCal

GEMs



An e-p elastic scattering event

1.1 GeV Production run: Online event matching between GEM and HyCal


GEMs

An e-e Møller event

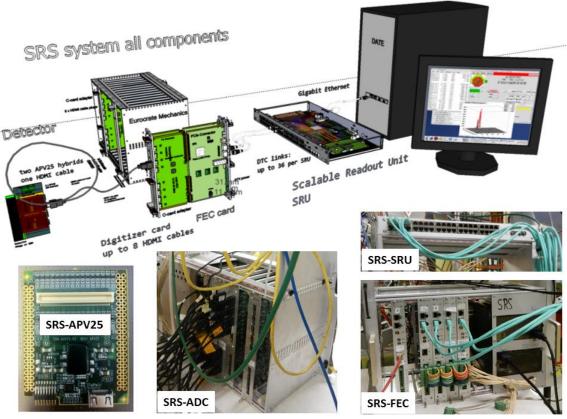
Preliminary results from 1.1 GeV Production run (Xinzhan's preliminary analysis)

Summary

The PRad Experiment runs

- Experiment has been successfully running for about 4 weeks
- Over 600M events collected (with about 25-30% background) for the 1.1 GeV run
- 2.2 GeV run just started and expect to run until June 21st
- Large PRad GEM chambers have been performing well
 - Two chambers performing at ~ 95% efficiency in the beam
 - Upgrade done on the APV25-based SRS electronics validated with the 1.1 GeV beam run
 - Trigger rate of the full DAQ (SRS and Fast bus crates) stable at 3.8 kHz with 87% live time
 - Preliminary results from analysis show expected performances of the GEMs will be met

Back Up



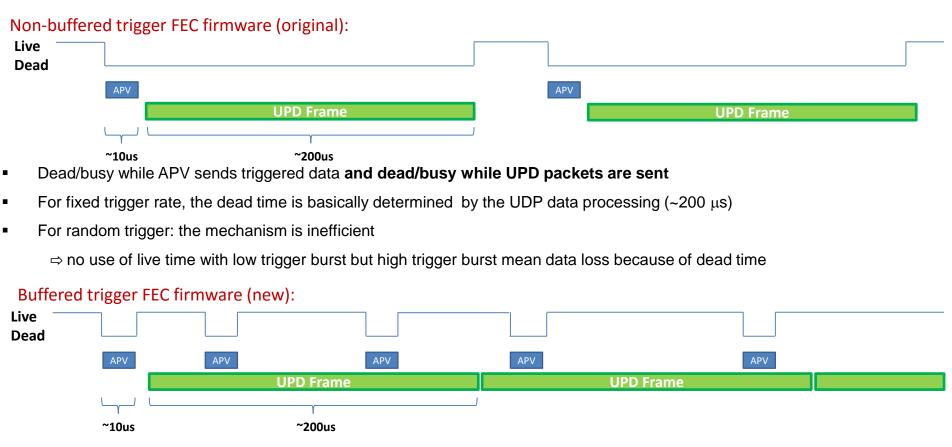
SBS Weekly. Meeting @ JLab, 06/15/2016

Front-End Electronics for PRad GEMs: The Scalable Readout System (SRS)

Multichannel electronics developed by the RD51 Collaboration for Micro Pattern Gaseous Detectors such as GEMs. It is based on:

- SRS-APV25: Front End cards (hybrids hosting the APV25 chip) mounted on the detector ⇒ send multiplexed data from128 channels to SRS-ADC cards via standard commercial HDMI cables.
- SRS-ADC: card that host the ADC chips, de-multiplex and convert data from up to 16 SRS-APV25 cards into digital format then send them to the SRS-FEC cards
- SRS-FEC: is the FPGA board, handles the clock and trigger synchronization of the SRS-APV hybrid cards, send digitized data from ADC to the SRS-SRU via 1 Gb Ethernet Copper link.
- SRS-SRU: handles communication between multiple (up to 40) SRS-FEC cards and the DAQ computer. It also distributes the clock and trigger synchronization to the SRS-FEC cards and send the data fragment to the DAQ PC through Gb Ethernet.

Need for the PRad GEMs:


- Hardware:
 - 72 SRS-APV FE cards (36 per GEMs) ⇒ total of 9184 channels to read out
 - 8 SRS-ADC / SRS-FECs with 9 APVs cards, 3 time samples
 - 2 SRS-SRUs to collected the data from the FECs transfer to the DAQ PC
 - TIpcie: Interface the SRS electronics into JLab DAQ (CODA)
- Firmware upgrade

SBS Weekly. Meeting @ JLab, 06/15/2016

SRS-FEC Firmware Upgrade: Trigger Buffering

(B. Moffit, JLab DAQ group - B. Raydo, JLab Fast Electronics Group)

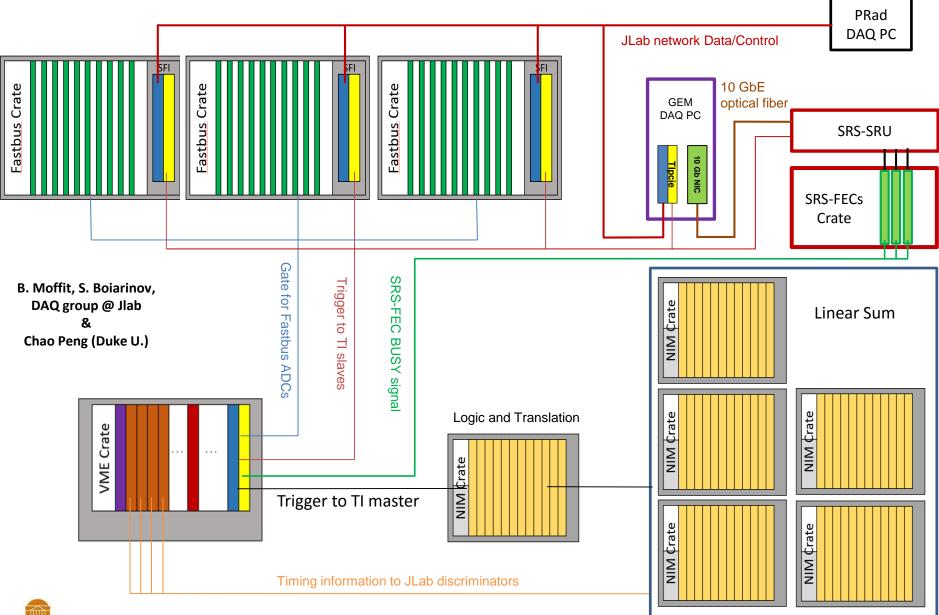
- Dead/busy while APV sends triggered data, no longer dead/busy while UPD packets are sent
- UDP processing of APV data is "de-correlated" from APV sending data
- When buffers in FPGA (holding captured APV for UDP processing) become full, then the FEC create necessary dead/busy time.
- For random trigger, @ high trigger burst, APV data are stocked in buffer and UDP packet is formed during the low trigger burst
- Dead/busy time while APV sends data can be eliminated to improve live time, but requires significant changes to FEC firmware.

Integration of SRS into JLab DAQ (B. Moffit, JLab DAQ group - B. Raydo, JLab Fast Electronics Group)

PCIexpress Trigger Interface (TIpcie)

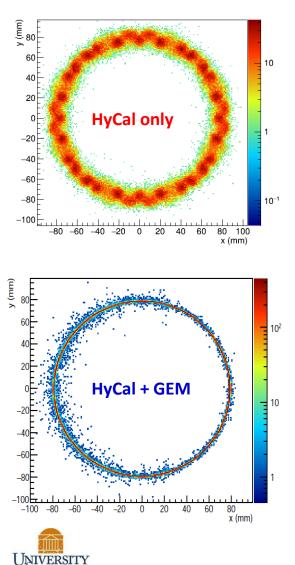
- PC / Server Integration into JLab Pipeline DAQ
- Standard PC Hardware allows for multiple network cards (1G, 10G, Infiniband)
- Fiber Connection (Clock, Trigger, Sync) to Trigger Supervisor
- Runs in Standalone (Master) or Larger-Scale DAQ (Slave).

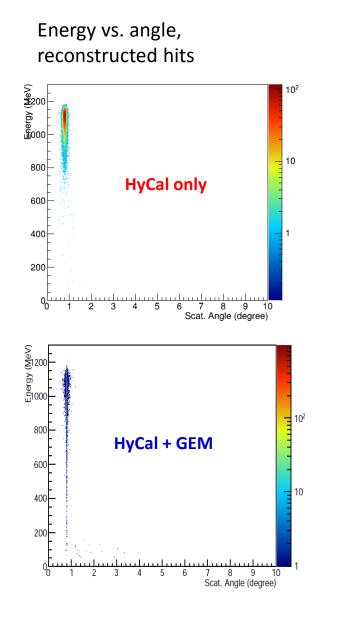
Software librairies for the slow control

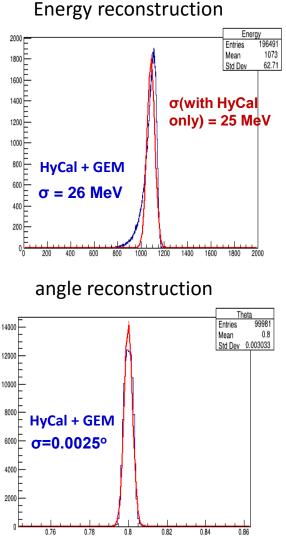

- C Library written to be used with CODA, but also works standalone (Master mode)
- Kernel and userspace driver compatible with EL5, EL6 (i386, x86_64)

Interface to the SRS

- APV Data from SRU to the DAQ PC with 10 Gb Ethernet
- SRU trigger from the TIpcie, FECs send BUSY signal to Trigger Supervisor
- DAQ PC multiple cores/threads for data processing ⇒ online zero suppression reduction factor ~ x200
- Online monitoring of Raw APVdata and GEM hits


Integration of SRS into JLab DAQ: PRad DAQ Overview


UNIVERSITY VIRGINIA


Monte Carlo Simulation: Impact of GEMs on the performances

Reconstructed theta ring (0.8 degree)

VIRGINIA

SBS Weekly. Meeting @ JLab, 06/15/2016