SBS Optics and Spin Transport

Andrew Puckett and Freddy Obrecht University of Connecticut SBS Weekly Meeting Jan. 27, 2016

Outline

- SBS/BigBite Optics studies from GEANT4
- Overview of previous studies in GEANT4
- Fitting SBS optics matrix—"reconstruction" coefficients
- SBS Spin Transport in GEANT4
 - Formalism—BMT equation
 - Ideal dipole approximation
 - Approach for fitting—added technical challenges compared to optics
- Current status and plans

SBS magnetic field layout from TOSCA

- SBS field components calculated by TOSCA, projected on the xz plane, in Tesla.
 - y component in the xz plane (at y=0) is zero by symmetry
 - Includes field clamps and beamline magnetic shielding

Jefferson Lab

• Field is predominantly horizontal and perpendicular to SBS axis in dipole gap

1/20/16

Good approximation to a pure dipole field

Hall A Winter Collaboration Meeting

BigBite and SBS optics from GEANT4

- Charged particles are traced through magnetic field layout of BigBite/SBS in GEANT4 using classical 4th-order Runge-Kutta numerical integration of the equation of motion.
- Charged-particles deposit energy in GEMs, making "hits"—GEM "hits" are then smeared by a Gaussian with a σ of 70 μ m, representing the coordinate resolution of GEMs, and a straight-line track is fitted.
- In MC, we know the track parameters at the target and at the "focal plane" (GEM location).
- We expand the reverse transport matrix in a power series in the measured track parameters:

$$(x'_{tgt}, y'_{tgt}, y_{tgt}, 1/p) = \sum_{i+j+k+l+m \le 6} C^{ijklm}_{x',y',y,1/p} x^i_{fp} y^j_{fp} x'^k_{fp} y'^l_{fp} x^m_{tgt}$$

• Track parameters at the target are *linear* functions of the expansion coefficients

1/20/16

- Use standard linear algebra libraries, e.g., Singular Value Decomposition (SVD), to fit the coefficients, avoid pitfalls of nonlinear fitting/numerical minimization/Minuit
- Why fit 1/p instead of p or the traditional $\delta = 100 \times (p/p_0 1)$ in the expansion?
 - SBS/BigBite are large-acceptance spectrometers—range of "delta" can equal or exceed ±100%, it is no longer a good expansion variable.
 - SBS/BigBite are non-focusing, dipole spectrometers→an expansion in 1/p converges very quickly—x_{fp}, x'_{fp} are almost linear in 1/p for dipole magnets

SBS and BigBite Optics/Resolution from g4sbs—Old results

SBS angle, vertex and momentum resolution for 1.4-Tesla uniform field, $\sigma_p/p \sim 0.5\%$ (average for 2-10 GeV pions)

BigBite angle, vertex and momentum resolution for "map_696A.dat", $\sigma_p/p \sim 1.1\%$

1/20/16

Jefferson Lab

Hall A Winter Collaboration Meeting

Optics and Spin Transport Studies for GEP, Q² = 12 GeV²

Track vertical bend angle vs. momentum

SBS angular and vertex acceptance for GEP highest Q²

- GEANT4 simulation for optics and spin transport:
 - Use "particle gun" generator with limits chosen wide enough to populate full acceptance of SBS (use 40 cm target)
 - Proton momenta generated in the range of 5-9 GeV (corresponding to highest Q² of GEP)
 - Generate 10,000 protons in three different starting spin orientations in the fixed TRANSPORT coordinate system:
 - Pure "X" (vertically down)
 - Pure "Y" (horizontal, toward small angle)
 - Pure "Z" (along SBS central ray)
 - Fit reconstruction coefficients and spin transport matrix elements

SBS optics fitting from GEANT4

- SBS angle, vertex and momentum resolution for 5-9 GeV protons
- sigma(xptar) ~ 0.3 mrad
- sigma(yptar) ~ 0.6 mrad
- sigma(ytar) ~ 1.5 mm
- sigma(p)/p ~ 0.66%
- Improvement of the fit not significant beyond about 4th-order expansion of reconstruction coefficients

Spin transport properties of SBS in GEP

- Spin precession in a magnetic field for is governed by the BMT equation
- For an almost pure dipole field, as in SBS, the proton spin precesses relative to its trajectory by an angle: $\chi = \gamma \kappa_p \theta_{bend}$
- Precession angle is almost constant within useful acceptance of SBS for elastic ep events (cancellation between momentum dependence of gamma and thetabend)
 Immonia Jefferson Lab

Differences between dipole and full calculation

- In dipole approximation, the spin component parallel to the field (Py) does not precess;
- Since SBS is non-focusing, the trajectory bend angle in the non-dispersive plane is close to zero for most trajectories
- Nevertheless, a small precession in the non-dispersive plane occurs for non-central trajectories
- This precession mixes P_T and P_L in extraction of GEp—important systematic uncertainty

Non-dispersive precession

- Non-dispersive-plane precession is non-zero mainly for rays with "yptar" = dy/dz != 0 ("phitarget" in usual Hall A notation)
- S_{yx} has a weak positive correlation with yptar
- S_{yz} (which mixes P_T and P_L), has a stronger negative correlation with yptar
- The slope of this correlation sets the scale for how accurately yptar needs to be determined to achieve a given accuracy on GEp/GMp (no, we haven't done the calculation yet)

Formalism for fitting spin transport matrix elements

- In the usual Maximum-Likelihood analysis, the forward spin transport matrix elements are used. These in turn have to be computed from the reconstructed proton kinematics at the target.
- We expand the "small" deviations from the ideal dipole approximation as a power series in the proton trajectory parameters at the target:
 - xtar, ytar, xptar, yptar, 1/p
- We fit using the SVD as in the case of the optics
- Additional technical challenge:
 - There is no guarantee that if we fit the individual matrix elements without enforcing any constraints, that the 3x3 matrix computed from the resulting expansion coefficients will be a proper rotation for any given event
 - We can try to fit the Euler angle and/or the angle-axis decomposition of the total rotation for a given event, but the problem is that such a decomposition is not unique, and it is difficult to define "good" expansion parameters.
 - Would like to come up with some kind of constrained optimization procedure to guarantee that the fitted Spin transport coefficients are guaranteed to give a proper rotation in each event

Spin fit results (5th-order)

- Fit deviations from the ideal dipole approximation up to 5th-order (still some room for improvement)
- Fit matrix elements directly
- Don't enforce any constraints
- Determinant results close to 1 in any case.

Status and plans

- Figure out how to enforce orthogonality in every event
- Add sieve slit to MC, develop optics and spin transport calibration/optimization procedures
- Quantify systematics

