

# SBS WBS 2.2 & 2.3 Magnet and Infrastructure

#### **Robin Wines**



11/07/2016

#### SBS





Jefferson Lab

### WBS 2 FY16 Scope of Work

#### WBS 2

- Procure Rear Field Clamp
- Procure Pole Shims
- Complete beamline and shielding supports
- Procure Electronics Hut materials
- Design and Procure Detector Frames





## **Kinematics of SBS**

•SBS Program is defined by three experiments, each with multiple configurations of equipment. Each configuration has been modeled and the required layout of the Hall has been determined. 07109 Hydrogen  $G_E^p$ 

#### **Polarized He3** $G_E^n$ 09016

| $Q^2$ [GeV <sup>2</sup> ] | θ <sub>BB</sub><br>[deg] | d <sub>BB</sub><br>[m] | θ <sub>48D48</sub><br>[deg] | d <sub>48D48</sub><br>[m] | d <sub>HCAL</sub><br>[m] | Beam Line<br>Configuration # |
|---------------------------|--------------------------|------------------------|-----------------------------|---------------------------|--------------------------|------------------------------|
| 1.46                      | 40.0                     | 1.50                   | 39.4                        | 2.8                       | 17                       | 2                            |
| 3.68                      | 34.0                     | 1.50                   | 29.9                        | 2.8                       | 17                       | 2                            |
| 6.77                      | 34.0                     | 1.50                   | 22.2                        | 2.8                       | 17                       | 2                            |
| 10.18                     | 34.0                     | 1.50                   | 17.5                        | 2.8                       | 17                       | 2                            |
| ı<br>M                    | 09                       | 019                    | )                           | Hv                        | droge                    | n/Deuteri                    |

| $Q^2$<br>[GeV <sup>2</sup> ] | θ <sub>electronarm</sub><br>[deg] | θ <sub>48D48</sub><br>[deg] | d <sub>48D48</sub><br>[m] | d <sub>electronarm</sub><br>[m] | d <sub>HCAL</sub><br>[m] | Beam Line<br>Configuration # |
|------------------------------|-----------------------------------|-----------------------------|---------------------------|---------------------------------|--------------------------|------------------------------|
| 5.0                          | 29                                | 25.7                        | 1.6                       | 9                               | 6.8                      | 1                            |
| 8.0                          | 26.7                              | 22.1                        | 1.6                       | 6.5                             | 6.8                      | 1                            |
| 12.0                         | 29.0                              | 16.9                        | 1.6                       | 4.5                             | 6.8                      | 1                            |

40cm Hydrogen

 $G_M^n$ 

#### Hydrogen/Deuterium

**Experimental Points** 

10cm Deuterium

| $Q^2$ [GeV <sup>2</sup> ] | θ <sub>BB</sub><br>[deg] | d <sub>BB</sub><br>[m] | θ <sub>48D48</sub><br>[deg] | d <sub>48D48</sub><br>[m] | d <sub>HCAL</sub><br>[m] | Beam Line<br>Configuration # |
|---------------------------|--------------------------|------------------------|-----------------------------|---------------------------|--------------------------|------------------------------|
| 3.5                       | 32.5                     | 1.80                   | 31.1                        | 2.0                       | 7.2                      | 3                            |
| 4.5                       | 41.9                     | 1.55                   | 24.7                        | 2.25                      | 7.2                      | 3                            |
| 5.7                       | 58.4                     | 1.55                   | 17.5                        | 2.25                      | 11                       | 3                            |
| 8.1                       | 43                       | 1.55                   | 17.5                        | 2.25                      | 11                       | 3                            |
| 10.2                      | 34                       | 1.75                   | 17.5                        | 2.25                      | 13                       | 3                            |
| 12.0                      | 44.2                     | 1.55                   | 13.3                        | 2.25                      | 14                       | 3                            |
| 13.5                      | 33.0                     | 1.55                   | 14.8                        | 3.1                       | 17                       | 4                            |

**Calibration Points:** 

**Experimental Points** 

10cm Deuterium

| $Q^2$ [GeV <sup>2</sup> ] | θ <sub>HRS</sub><br>[deg] | θ <sub>48D48</sub><br>[deg] | d <sub>48D48</sub><br>[m] | d <sub>HCAL</sub><br>[m] | Beam Line<br>Configuration # |
|---------------------------|---------------------------|-----------------------------|---------------------------|--------------------------|------------------------------|
| 3.5                       | 34.1                      | 31.1                        | 3.1                       | 17.                      | 4                            |
| 3.5                       | 30.9                      | 31.1                        | 3.1                       | 17.                      | 4                            |
| 6.0                       | 69.1                      | 14.9                        | 3.1                       | 17.                      | 4                            |
| 6.0                       | 65.9                      | 14.9                        | 3.1                       | 17.                      | 4                            |
| 6.0                       | 62.7                      | 14.9                        | 3.1                       | 17.                      | 4                            |
| 6.0                       | 59.5                      | 14.9                        | 3.1                       | 17.                      | 4                            |





### 1.1 and 2.3 Field Clamps



•Front field clamps needed to limit target field, less than 40 G. Designed as 4 pieces bolted together.

•Rear field clamps needed to limit detector field. Designed as two pieces bolted together.

•Field clamp supports designed for adjustability. Field clamp supports are in storage.

• Front and rear field clamps are in storage.









#### **2.3 Pole Shims**

- Pole shims are required in GEp configurations to increase field integral.
- Pole shims -In storage.
- Installation device required to insert into Magnet gap.
- Installation cart- In storage.





#### **2.2 Electronics Huts and Shielding**



- Radiation and cabling studies completed to define locations and shielding requirements of electronics huts. Shielding and hut designs have been reviewed by Facilities and ESH.
- Shielding blocks available at Jlab. Supports and shielding plates in storage.





#### 2.2 Beamline Shielding



• Kinematics of experiments require 4 beamline configurations. Developed tower & overhead support to accommodate all configurations.

Tower fabricated and in final inspection.



Main tower





**SBS** beam line

Radiation shielding & supports

## 2.2 Beamline and Radiation Shielding

**Radiation Shielding** 

- GEp requires lead wall to shield detectors from background created by beam to dump halo.
- Lead bricks in-house. Design complete for support of lead. Fabrication to be complete December 2016.



#### **Beamline Shielding**

- **Conical beam pipe and shielding pieces** in storage.
- Assembly concept complete. Assembly hardware in fabrication.









#### 2.2 Detector Supports – GEMs & Plastic Analyzers

- Support platform for SBS detectors in fabrication to be delivered November 21, 2016.
- UVA GEM frames in fabrication to be delivered December 15, 2016.
- INFN GEM frames incorporated into platform design.







### 2.2 Detector Supports - HCal



Frames, front plates, back plates and rotation/lifting device in storage. **Ready for** assembly. **Concept for** cable scaffolding and base support in Hall is being detailed.







### 2.2 Detector Supports - ECal & CDet



- Existing platform to be used for supporting ECal and CDet support.
- CDet support frame fabricated and ready for assembly.





## **SBS Program**

#### Manpower

Hall A Design/Engineering available resources – 5 designers, 2 engineers, 1 engineering associate, Hall Coordinator and 6 technicians
Remaining SBS equipment requirements are experiment specific and thus incorporated into Hall operations manpower planning.

#### Installation

- Assembly and installation of equipment in Hall A is dependent on Experiment schedule. Typical new installation takes 4-6 months.
- General interaction of SBS with other experiments or hall infrastructure is done under Hall operations.
- After program completion, installation is Hall operations.





### SBS ESH &Q

# Fully integrate ESH&Q into planning ,design, fabrication and installation

•Conducting design and safety reviews of major subsystems before fabrication and installation; such as engineering review of support structure, review of equipment supplied by Collaborators and electronics hut.

•Coordinating work of outside institutions to insure Jlab policies are followed; Collaborators present designs for review in weekly meetings.

•Utilizing Jlab screened vendors and requiring vendor's to have quality program in use; Jlab approved vendor list for weldments.

As program has progressed into fabrication and installation,

 Perform hazard analysis and utilize Jlab safety system for all testing and commissioning activities; such as load testing, weld inspection, TOSPs, coil acceptance tests, window testing, pre-assembly and testing of magnet and supports.

•Each SBS Experiment will be required to complete the Jlab Readiness Review process.





#### Summary

- All components of SBS have been defined.
- All WBS 2 items are completed or in process of delivery by December 15, 2016.

| WBS 1   |                           |              |
|---------|---------------------------|--------------|
| LevelID | Milestone                 | Status       |
|         |                           | All Complete |
| WBS 2   |                           |              |
| 2       | Receive exit field clamp  | Complete     |
| 2       | Electronics hut assembled | Complete     |
|         |                           |              |



