INFN, silicon tracker status

F. De Persio, F. Meddi, G.M. Urciuoli, F. Noto (INFN)

Silicon microstrip detector design

rumber of strips : 2070 strip length : 78500 (No. 1-100) strip length : 95500 (No. 101-300) (No. 1871-2070) strip length : 102000 (No. 301-1870)

Silicon microstrip detector

Zoom

The SBS silicon tracker X and Y planes

Four identical silicon microstrip detectors build up the SBS silicon tracker X and Y planes. Each plane is build up by two silicon microstrip detectors properly rotated and constituting each half a plane.

Two different kind of PCBs for the X and Y half planes respectively.

Half X Plane PCB

Half Y Plane PCB

UP to the end of 2017

• Production and test of a **prototype** of half a plane X.

• Software analysis strategy developed: all the 6 values related to the latencies corresponding to the great part of the silicon microstrip detector signal generated by a MIP are summed up: MPDs can read values corresponding to not more than 6 contiguos latencies).

• Satisfactory results from the point of view of the protoype signal generation and collection and of the Signal to Noise Ratio

• Mayor problem experienced: excessive wire-bonding breakings after transportation for relatively short distances.

Investigation about the causes of wirebonding breakings

Computer simulations of **detector + PCB assembly deformations caused by handlings**.

No effects of bad handling and/or wirebonding stresses on our PCB + detector assemblies resulted by computer simulations.

... Only the transport sysytem to be blamed for that.

Cumulative effects of wirebondings and handlings.

New Transport system successfully tested for transportation from Bari to Rome (≈ 430 km)

Broken wirebondings: (out of 5500)
patch = 3
Silicon = 4
PCB = 0

Broken wirebondings: (out of 5500)
patch = 3
Silicon = 4
PCB = 0

X Plane Detector

Y Plane Detector

Test Robustness of Packing and Shipping of one wire bonded dummy silicon detector sent to JLAB and returned to Rome, via airplane

Just arrived!! To be checked soon by **Probe Station** visual inspection Silicon microstrip detector production started at INFN-Bari with an automatic bonding machine Devoltec 6400, G4 type:

one half plane X with a standard PCB design, and one half plane Y with a reduced GND plane PCB already produced

New analysis algorithm

- For each cosmic ray run, the average of each single strip ADC counts and the relative standard deviation are calculated.
- A MIP is considered «crossing» a strip when, for the event concerned, the ADC relative value exceeds the average of a predetermined number of standard deviations.

Prototype signal good results confirmed

MIP distribution along the detector

Conclusions

- One half X plane (bonded to a standard PCB) and one half Y plane (bonded to a reduced GND plane PCB) constructed.
- X half plane showed good results.
- Y half plane produced results slightly worse (≈ 10% smaller S/N).
- One more half plane X and two more half planes Y are being constructing at INFN-BARI and will be delivered soon to Rome (to be qualified) and then shipped to Jlab.
- Contaact with the Jlab engineering staff needed to coordinate Silcon planes installation.