
Axial-Vector Form Factor (AVFF) Proposal Update

T. Averett, William & Mary, 2-Oct-2024

- Half-day meeting designed to pull together ideas and collaboration
 - 14-Sept-2024
 - J. Napolitano Overview
 - A.Meyer Theory Perspective
 - W. Xiong –Simulation
 - D. Carman CLAS12 High Res. TOF
 - T. Averett Proposal Overview
 - https://indico.jlab.org/event/878/

Weak CC "Elastic Scattering"

$$p(\vec{e}, \mathbf{n}) \nu$$

Never Measured

$$rac{d\sigma}{dQ^2} \propto G_E(Q^2), \; G_M(Q^2), \; G_A(Q^2)$$

In a nutshell, obtain the nucleon axial-vector FF in elastic by precise neutron detection.

Elastic CC Formalism for our Reaction – P. Kroll

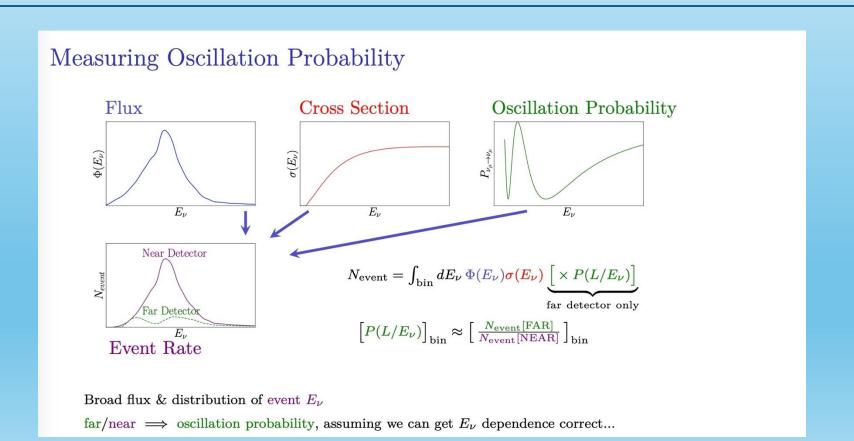
Unpolarized Cross Section

$$\frac{d\sigma}{dt} = \frac{1}{16\pi} \frac{1}{(s-m^2)^2} \left(\frac{G\cos\theta_C}{\sqrt{2}} \right)^2 8 \left\{ (s-m^2)^2 (F_1^{(3)2} + \underline{F_A^{(3)2}}) + t \left[sF_1^{(3)2} - \frac{(s-m^2)^2}{4m^2} F_2^{(3)2} + (s-2m^2) \underline{F_A^{(3)2}} \right] \right.$$

$$\left. - 2(s-m^2) (F_1^{(3)} + F_2^{(3)}) \underline{F_A^{(3)}} \right]$$

$$\left. + \frac{1}{2} t^2 \left[|F_1^{(3)} + F_2^{(3)} - \underline{F_A^{(3)}}|^2 - \frac{s}{2m^2} F_2^{(3)2} \right] \right\}$$
where, $F_{1,2}^{(3)}(t) = F_{1,2}^p(t) - F_{1,2}^n(t)$ m is the nucleon mass

Polarized beam:

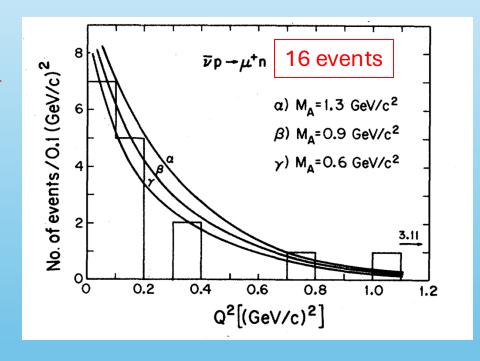

$$\frac{d\sigma(-)}{dt} = 2\frac{d\sigma}{dt}$$

$$\frac{d\sigma(+)}{dt} = 0$$

$$\text{Connection to GPDs} \qquad F_A^{(3)}(t) = \int_0^1 \left[\tilde{H}_v^u(x,\xi,t) - \tilde{H}_v^d(x,\xi,t) \right] dx + 2 \int_0^1 \left[\tilde{H}^{\overline{u}}(x,\xi,t) - \tilde{H}^{\overline{d}}(x,\xi,t) \right] dx$$

Motivation: Determine cross section and G_A with precise $Q^2 = 1 \text{ GeV}^2$ via ep -> vn

- Goals
 - Cross section poorly know
 - Dipole assumption not justified not consistent with QCD
 - Compare to precise LQCD calculations
 - New GPD constraint
 - Reduce systematics in neutrino oscillation experiments


World Weak Elastic Data:

- Modern neutrino factories use $~
 u + {
 m A} \longrightarrow \mu + {
 m N}~$ nuclear corrections
- Inelastic Data → meson production, messy
- * 16 bubble chamber events in 1980-
- * 2023 MINERvA see slide 7

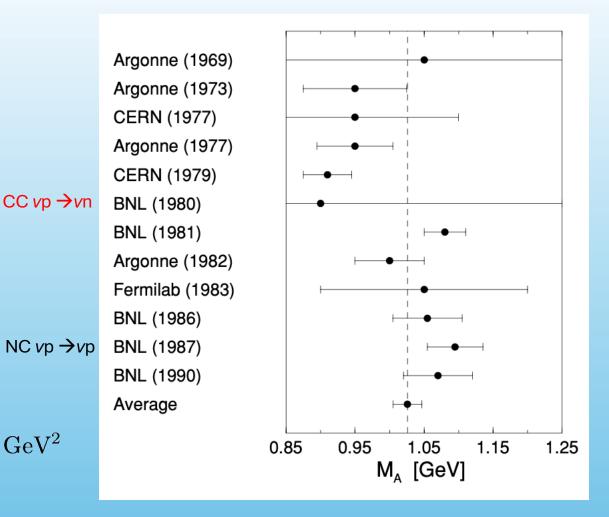
$u + p \longrightarrow \mu + n$

Issues:

- Poor statistics
- Neutrino energy spectrum is broad $Q^2 \rightarrow 0.5 6 \text{ GeV}^2$
- Nuclear corrections

Fanourakis et al., PRD 21, 1980

World Data for M_A from quasielastic* scattering *except elastic in CC in 1980, and NC in 1987

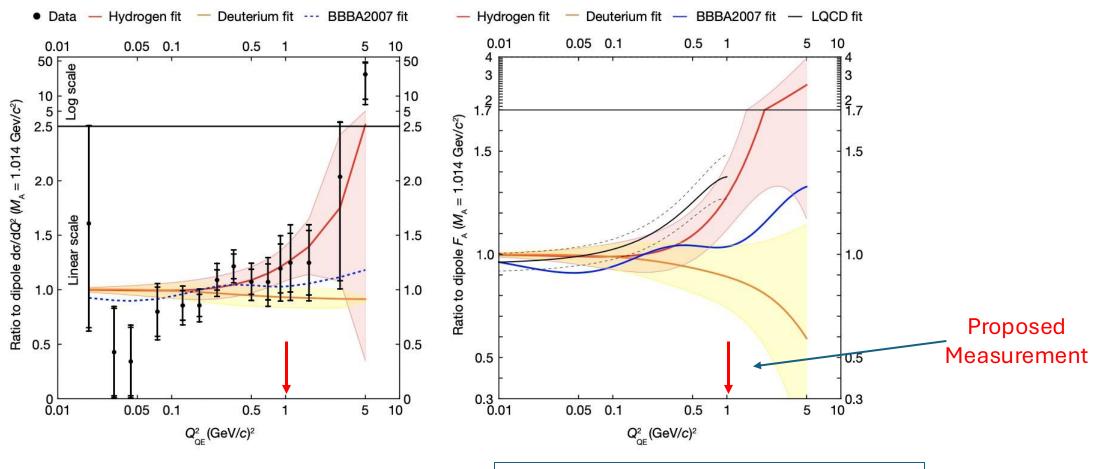

Assume Dipole, extract M_A :

$$F_A(Q^2) = F_A(0) \left(1 + \frac{Q^2}{M_A^2} \right)^{-2}$$

$$F_A(0) = g_A = -1.2723$$

Well-known from neutron beta decay

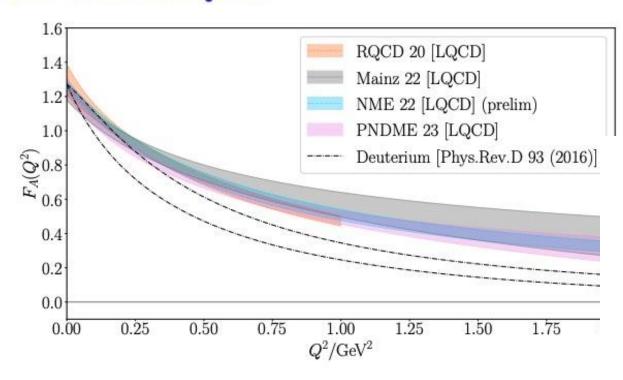
One free parameter, $M_A=0.9^{+0.4}_{-0.3}~{
m GeV^2}$

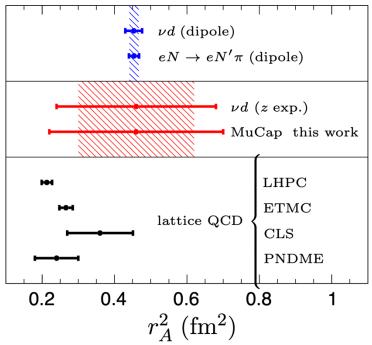

Summary
J. Phys. G: Nucl. Part. Phys. 28 R1

The Axial Form Factor Extracted from <u>Elementary</u> Targets Talk by Aaron S. Meyer LLNL PRD 93, 113015 (2016)

- Why do we even assume the axial form factor is dipole-like?
- No reason a priori to expect $F_A \sim F_D$, inconsistent with QCD
- Cross section precision cannot distinguish between models
- Reanalysis of historical data from deuterium bubble chambers $d(\nu_{\mu}, \mu^{-}pp_{s})$
 - 3 expts, low statistics, flux uncertainty, nuclear correction
- Reanalysis assumes F_A comes from QCD-motivated, model independent z expansion formalism, also used for EM FFs => proton radius as $Q^2 \rightarrow 0$
- \rightarrow Meyer Conclusion: Dipole ansatz has led to ~ 10x underestimated uncertainty in F_A
- Why impt? 50% of cross section comes from F_A ???

2013 MINERvA Results from M. Kordosky





Black dots -- MINERvA cross section data ratio to xsec predicted by dipole FF

Red = proton fit using z-expansion Orange = deuteron fit using z-expansion Black = LQCD

Axial Form Factor from LQCD

LQCD results maturing:

- ▶ Many results, all physical M_{π} : independent "data" & different methods
- ▶ Small systematic effects observed (expectation: largest at $Q^2 \to 0$)
- Subject to nontrivial consistency checks from PCAC

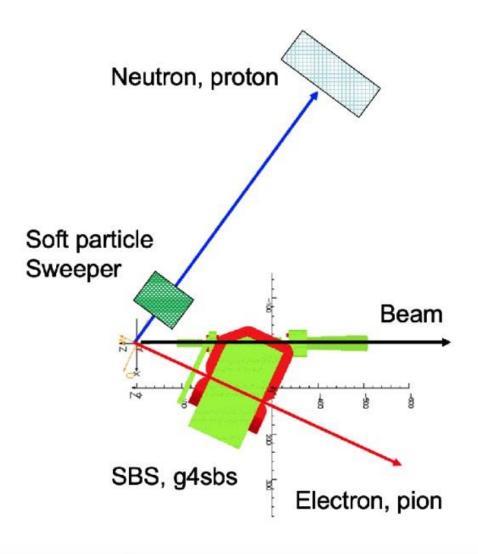
LQCD prediction of slow Q^2 falloff, situation unlikely to change drastically

Experimental Overview

• 10 cm LH2 target

$$p(\vec{e}, \mathbf{n}) \nu$$

- 100 uA beam longitudinally polarized → 100% asymmetry
- 500 hours, E = 2.2 GeV, $Q^2 = 1 \text{ GeV}^2$
- Hadron arm + pion veto Arm (SBS)

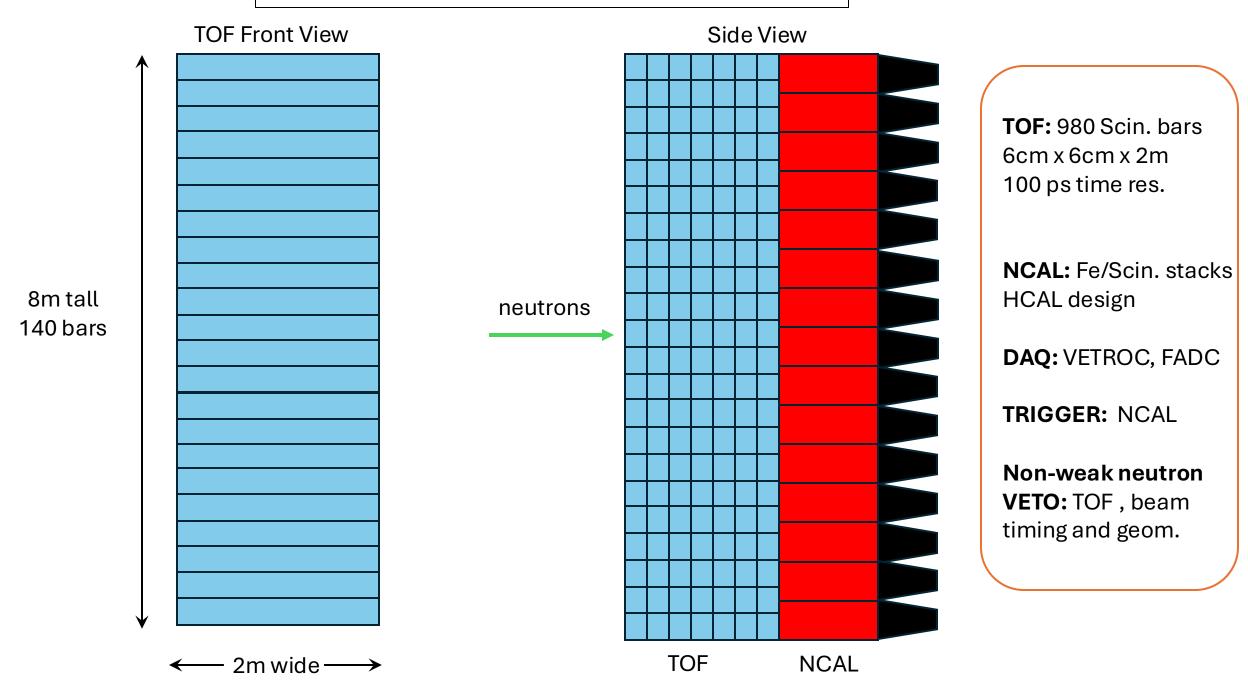

Three processes for neutron production

$$e+p\longrightarrow
u+n$$
 weak CC elastic $rac{d\sigma}{d\Omega}\sim 10^{-39}$ cm²/sr

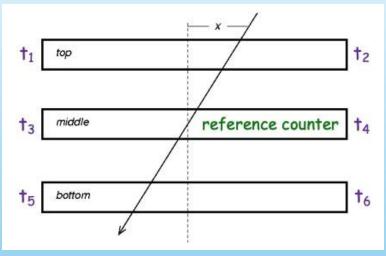
$$e+p\longrightarrow e+p$$
 EM elastic $\frac{d\sigma}{d\Omega}\sim 10^{-32}$ cm²/sr

$$\gamma + p \longrightarrow \pi^+ + n$$
 pion photoproduction $\frac{d\sigma}{d\Omega} \sim 10^{-31} \text{ cm}^2/\text{sr}$

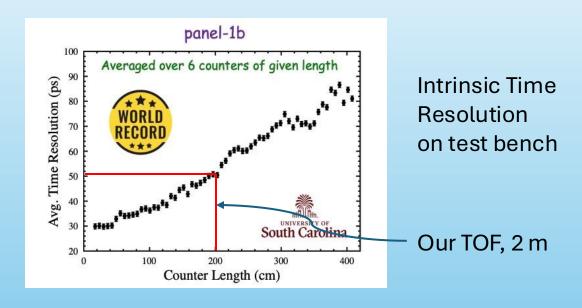
Letter of Intent to PAC 52 (Summer 2024)

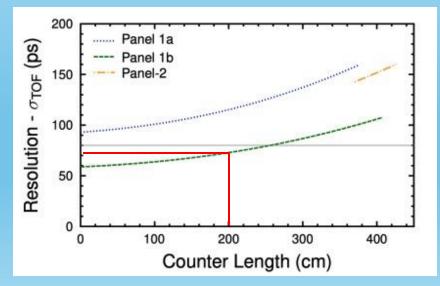

Key Assumptions

- A 500-hour data taking run with a beam on a 10cm-long LH2 target in Hall C.
- •A 100 µA electron beam at 2.2 GeV energy with a high degree of circular polarization.
- SBS to veto events from the processes with the final state electron or pion.
- A large size high efficiency neutron detector with time resolution better than 100 ps at a distance of 15 m from the target (75 msr).
- A magnet covering the neutron arm acceptance to sweep out charged particles.

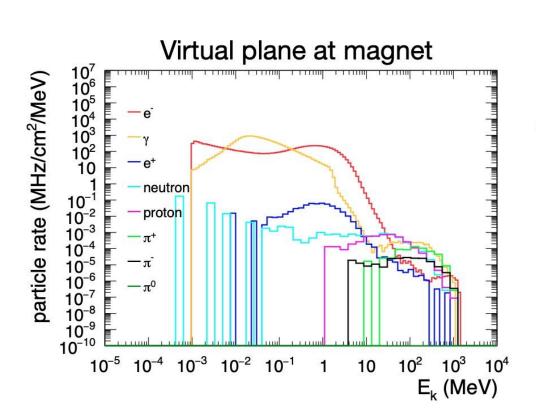

Two goals:

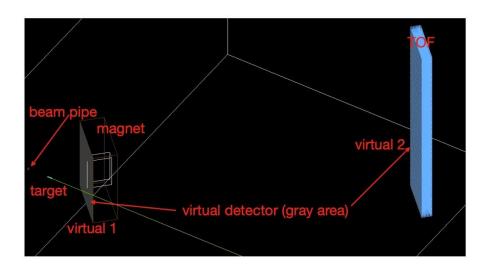
- High Rate requires high online background rejection to get DAQ rates manageable
- High offline rejection of non-weak processes
- Primary Detector: Horizontal sweeper magnet \rightarrow 7 layer TOF \rightarrow Hadron Calorimeter (NCAL)
 - Protons, electrons and low energy charged particles horizontally off of NCAL
 - Online: NCAL trigger on n → constrain TOF hit location → timing cuts
- Veto Spectrometer: SBS → GEMs → HCAL
 - Offline rejection of pi-n coincidence events

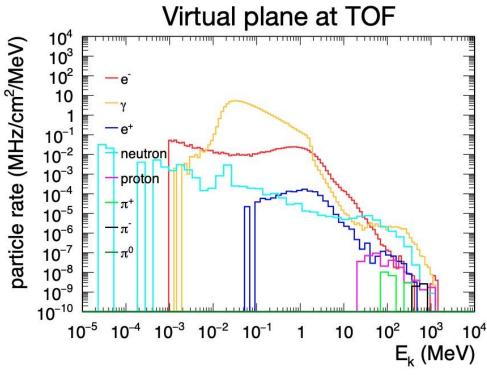

Neutron Arm – TOF followed by Neutron Calorimeter



• CLAS12 FTOF Panel-1b is basis for our TOF design → we require 100 ps resolution







Effective Time Resolution, in-situ GEANT4 Simulation of Neutron Arm Weizhi Xiong, Yi Yu, Shangdong Univ., China

Virtual Plane 1 – front of sweeper magnet Virtual Plane 2 - TOF

All detectors are placed in air

NCAL trigger rate with 50 MeV threshold

- Protons, electrons will be deflected off of NCAL
- Neutron rate ~ 800 kHz simulation
 - Reduce non-correlated 400 kHz rate to 1 kHz using TOF and NCAL event position correlation
 - Expect position-correlated event 200 kHz rate
 - Reduce to 20 kHz using timing cut with beam bunch
- DAQ rate ~ 20 kHz

Offline Rejection

- Accidental rate:
 - Assume 10 ns time window, 1000 bars, 1 MHz per bar GEANT4 simulation
 - Accidental rate per trigger = $10^{-8} * 10^{3} * 10^{6} = 10$ accidental TOF hits per NCAL trigger
- Remaining 10 accidental in TOF at 1 kHz
- Additional 90% pi-n rejection from pion coincidence in VETO arm
- Reduce time window 10 ns --> 1 ns (offline time res = 0.1 ns), factor of 10
- 100 Hz event rate
- Final rejection using neutron energy cut based on 100 ps TOF resolution → 4 Hz pion related

Final Numbers

- Expected *v*n rate 50 events/hour => 0.014 Hz
- 50% neutron efficiency in TOF => 0.007 Hz
- Accidental 4 Hz => 2 Hz

• Asymmetry
$$A = \frac{(2+0.007)-2}{(2+0.007)+2} = 0.0018$$

• 500 hours at 2 Hz => $N = 8.6 \times 10^7$

$$\frac{dA}{A} = \frac{0.00018}{0.001} \to 18\%$$

Status:

- PAC response to LOI (paraphrased): A unique opportunity to measure the axial-vector FF, the least well-known nucleon FF. Of considerable importance for accelerator-based neutrino oscillation experiments. The PAC encourages the proponents to proceed to a full proposal after the above issues (full simulation, detector details, cost) are addressed. Need a full Monte Carlo simulation. If this method of extracting the axial-vector form factor proves successful, the PAC notes that this could become part of a larger measurement campaign. In particular, a measurement of the Q2 dependence of the axial-vector form factor would be of great interest to the neutrino scattering community.
- Currently Weekly simulation meetings
- In place: Accurate cross section formalism/estimation from Peter Kroll
- Qty = 7 CLAS12 type scintillators + PMTs being tested in BW lab
- Proposal in progress TDA, BW
- Upon approval MRIs for TOF and NCAL xxM\$??
- JOIN US in measuring a channel never before explored !!!!