Minutes: SBS Meeting July 18, 2012

1) John LeRose gives brief talk on organizing the new coordinate detector
 a) Presents starting document. See link.
 b) Need a cohesive comprehensive plan. So far we have lots of bits and pieces.
 i) What we are doing
 ii) Who is doing it
 iii) When (i.e. a detailed schedule)
 iv) How much (including schedule)
 c) Encourages all to read the document and make comments, additions, etc.

2) Mark Jones reports on study of CLAS Large Angle Calorimeter
 a) See link
 b) Gives details
 c) Contrasts with BigCal
 i) 1st pass BigCal looks much better
 ii) But, more work is needed
 d) Bogdan points out things left out
 e) Next report in 2 weeks

3) Al Gavalya goes over many layout drawings discussing various interferences.
 a) See link1 and link2
 b) Shows layouts for various kinematics. For a listing of the kinematics used see link. Comments on some below.
 i) GEn_10_18:
 (1) Can we move the SBS magnet back? 30 cm is OK
 (2) Beamline modifications will be required too (cost more than original estimate)
 (3) How do we change angles?
 (a) Suggests using HRS to drive the SBS
 (b) Bogdan suggests something simpler (more brute force) might be better. 8 hours for an angle change is OK.
 ii) GEp_8_8: will revisit the kinematics
 iii) GEp_11_0: OK, clamp issue, Robin says we can trim it.
 iv) GMn_3_5:
 (1) Move SBS back
 (2) Will need different beam pipes for different configurations
 v) GMn_4_5: Beam line goes through the coil. Move the magnet back.
 vi) GMn_13_5: largest Q^2 point, but no problem
 vii) GMn_10_0: Magnet in magnet (BigBite and SBS). Cut some iron and move SBS back.
 viii) In general, the large Q^2 points are the most critical as far as acceptance is concerned. At the lower values moving the magnet back is OK. (Acceptance loss not problematic)
c) Various people assigned to review the kinematics. Shift angles to make small changes in Q^2 to reduce conflicts. Will look into matching Q^2 settings between experiments to minimize the number of different beam line configurations.

d) Al encourages us to talk to him whenever we consider making changes

e) Al will start looking at the structure. Will start with a fixed structure.

-JJL