Background calculations for G_Mⁿ + Tracking

Eric Fuchey University of Connecticut

SBS collaboration meeting Jefferson Lab, July 13-14, 2017

Overview

- * G4SBS simulation: additions / updates of geometries
- * Recent background calculations for G_{M}^{n} ERR
- * Tracking
- * Summary

Geometry updates in G4SBS

Big Bite detector package :

July 14th 2017

* Updated BB detector package according to drawings from Joyce Miller

* GRINCH tank more realistic;
+ GRINCH PMT geoemtry fixed (was overestimating backgrounds by a factor 10!)

* Added a simplified version of BB timing hodoscope

* Optional BB Ecal shielding

NB : new g4sbs command to switch shielding easily: /g4sbs/bbshieldconfig 1

- 0 : no shielding
- 1:1/4" steel + 0.5mm mu-metal (default)
- 4 : (1) + Steel + Al (1 cm + 5cm)

Geometry updates in G4SBS

HCal (credit : Juan Carlos)

July 14th 2017	
UCONN	Jefferson Lab

* More relastic geometry of The HCal modules

* Added 3/4 inches steel plate in front of Hcal.

Scattering chamber + beamline with the engineers current design:

- Conic vacuum line weldment;
- spool piece;
- inner and outer magnetic shieldings;
- beam corrector magnets;

Configuration of the two later items can be changed with a new command: /g4sbs/beamlineconfig <int> The integer being equal to the beamline configuration number convention used by the engineers: 1 for G_E^p , 2 for G_E^n , 3 for G_M^n (all Q2 but higher), 4 for G_M^n (higher Q2 + calibrations).

Other updates in G4SBS: G_M^n setup Tosca field map for $Q^2 = 13.5 \text{ GeV}^2$

Geometry updates in G4SBS: **G**_Mⁿ setup

Beam line shielding (see also section on backgrounds).

Added CDet (with CH₂ filter in front).

GEM electronics shield hut (credit: Freddy)

NB : all this work has been made in git uconn_dev or cmu_dev branches (which have been merged recently).

I forget :

* work on TDIS RTPC setup by Rachel;

* other independent contributions (?);

Not yet incorporated into uconn_dev nor master branch (to be done eventually – likely nothing urgent).

TODO :

* Merge uconn_dev and master branch soon ;

* Update G_{F}^{p} ECal design;

* Add polarized target installation (magnets, magnetic field shieldings, etc) for ³He experiments (G_{F}^{n} , SIDIS).

Overview

* G4SBS simulation: addition / update of geometries

* Recent background calculations for G_{M}^{n} ERR

* Tracking

* Summary

G_Mⁿ detector backgrounds: beamline shielding

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 44 \mu \text{A}$, 10 cm LD_2

GEM, GRINCH background rates for G_M^n $Q^2 = 13.5 \text{ GeV}^2$, $I_{beam} = 44 \mu A$, 10 cm LD₂, **Beamline + BB Ecal shielding**

Rates < 100 kHz/cm2 for all planes: ~90 kHz/cm2 for INFN GEM (planes 1-4), 40 % lower than w/o shielding ~55 kHz / cm2 for UVA GEM (plane 5) 4x lower than w/o shielding ~73 % from target, ~2% from 48D48, ~6% from BL,

- ~4% from SC;
- Rest (15%) from shielding

Overall rate for GRINCH in Gⁿ_M, Q² = 13.5 GeV², Lead + side + ECal shielding (44 µA): 5.371e+07 ± 2.388e+06 Hz

54 MHz over detector => average rate per PMT: 106 kHz 6x lower than w/o shielding

- ~58% (~70 kHz/PMT) from **target**, ~13% (~16 kHz/PMT) from 48D48 ~18% (~22 kHz/PMT) from BL, ~8% (~10 kHz/PMT) from SC
- Rest (3%) from shielding

BB Ecal dose rate for G_{M}^{n} $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{heam}} = 44 \mu A$, 10 cm LD₂, Beamline + BB Ecal shielding

Average energy deposit in a PS block per second (MeV): 3.3 10⁸; Average energy deposit in a SH block per second (MeV): 1.1 10⁸.

BB Ecal shower column

Jefferson Lab

BB ECal background photoelectron rates for G_M^n

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 30 \,\mu\text{A}$, 15 cm LD₂, beamline shielding + CH₂ filter

To estimate signal over background ratio, we integrate these photoelectron rates, to obtain an average photoelectron yield over a given period of time (e.g. here, 50 ns), then we compre those photoelectron yields with the photoelectron yields provided by the signal (next slide) 2017/06/28

BB Ecal response to Quasi-elastic electrons

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 44 \mu A$, 10 cm LD_2 , Beamline + BB Ecal shielding

We consider 1 GeV electrons (to be conservative)

PreShower: Np.e. (3.8 GeV) = 1725 p.e. Np.e. (1 GeV) = 454 p.e.

SHower: Np.e. (3.8 GeV) = 3540 p.e. Np.e. (1 GeV) = 932 p.e.

2017/06/28

15

BB Ecal Signal over background ratio

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 44 \mu A$, 10 cm LD₂, Beamline + BB Ecal shielding

2017/06/28

> Channel numbering conventions for BBPS-SH: > channel # 0: top, furthest from the beam > channel # 26: bottom, furthest from the beam > channel # 27 (PS) 161 (SH): top, closest to the beam > channel # 53 (PS) 188 (SH): bottom, closest to the beam

HCal background rates for G_M^n

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 30 \ \mu\text{A}$, 15 cm LD_2 , beamline shielding + CH_2 filter

1GeV neutron energy: 87 MeV;

Total energy deposited in plastic: ~1.8 10¹⁰ MeV/s = 6.35 10⁷ MeV/s/block Background energy deposit / block over 50 ns: 3.1 MeV

HCal response to 100 GeV muons

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 30 \ \mu\text{A}$, 15 cm LD₂, new setup, Tosca field map

Energy MPV: 84 MeV

Np.e. = 270 p.e.

(Measurements from CMU : 400 p.e. for cosmics)

University of

Connecticut

HCal background rates for G_M^n

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 30 \ \mu\text{A}$, 15 cm LD_2 , beamline shielding + CH₂ filter

19

HCal Signal over background ratio

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 30 \ \mu\text{A}$, 15 cm LD_2 , beamline shielding + CH₂ filter

∆t(background): 50 ns S/B ratio ≥ 15

2017/06/28

- > Channel numbering conventions for HCal: > channel # 0: top corner, closest to the beam
- > channel # 11: top corner, furthest from the beam
- > channel # 264: bottom corner, closest to the beam
- > channel # 287: bottom corner, furthest from the beam

HCal background rates for G_M^n

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 30 \ \mu\text{A}$, 15 cm LD_2 , beamline shielding + CH₂ filter

Background in HCal: Energy deposit fluctuations per channel

Sample energy deposit by 50 ns.

Mean energy deposit / block over 50 ns: ~3 MeV, with Mean: 1.5 MeV

Superimposed background to quasi-elastic nucleon signal: background generated randomly, in each block sharing the QE nucleon signal, according to the respective background distribution of the block (next two slides)

HCal : impact of background in QE nucleons

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 30 \ \mu\text{A}$, 15 cm LD₂, beamline shielding + CH₂ filter

HCal : impact of background in QE nucleons

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 30 \ \mu\text{A}$, 15 cm LD₂, beamline shielding + CH₂ filter

Background has a marginal effect on signal reconstruction

Cdet response to ultrarelativistic muons

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 30 \ \mu\text{A}$, 15 cm LD_2 , new setup, Tosca field map

CDet background rates for G_M^n

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 30 \ \mu\text{A}$, 15 cm LD₂, beamline shielding + CH₂ filter

Rates : 100-300 kHz / channel with CH₂ filter : Average energy deposit in a CDet slat *per second*: 9.2 10⁶ MeV. => Signal (MIPS 7.1 MeV) / 15 ns integrated background => ~50

July 14th 2017

Channel numbering conventions for CDet: channels # 0-587: first plane, far from beam channels # 588-1175: first plane, close to beam channels # 1176-1763: second plane, far from beam channels # 1764-2352: second plane, close to beam

BB hodoscope response to quasi-elastic eletrons

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 30 \,\mu\text{A}$, 15 cm LD₂, beamline shielding + CH₂ filter

Total energy deposited over BB hodoscope for QE electrons: **110 MeV**
(the BB hodoscope is hit by EM showers, not MIPS)
=> In most cases, **60 MeV** are deposited in **1** element. To record the signal from
this scintillator with 99.5% efficiency, threshold needs to be **8 MeV**.

BB hodoscope background rates for G_Mⁿ

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 30 \ \mu\text{A}$, 15 cm LD₂, beamline shielding + CH₂ filter

BB hodoscope , G_{L}^{n} , Q^{2} = 13.5 GeV², beamline + ECal shielding + CH₂ filter, 15 cm LD₂ , I = 30 μ A

Rates: 500 kHz Max / Channel

Average energy deposit in a BB hodo slat *per second*: 1.25 10⁷ MeV. => Signal (QE e⁻, 60 MeV) / 15 ns integrated background => ~320

> Channel numbering conventions for BBHodo: > channel # 0: bottom

> channel # 89: top

GEM electronics dose rate for G_M^n

	(cred	dit: Fre	eddy)		
N SIMULATION INTRO.		Electronic ●00	IS HUT ANALYSIS	A	APPEN 00000
¹ Electro	NICS HU	Т			
$\overline{Q^2(GeV^2)}$	$\theta_{BB}(deg)$	$d_{BB}(m)$	E _{beam} (GeV)	$I_{beam}(\mu A)$	
13.5	33.0	1.55	11.0	44.0	
► Ran 15 ×	10 ⁹ events v	with the be	eam generator	2	
 Ran 15 × Silicon se Density c Total energy 	10 ⁹ events v nsitive regi of Silicon us rgy deposit	with the be on is 101.6 ed = 2.33 § ed = 910 N	eam generator 5 x 101.6 x 2.54 g/cm ³ /eV	cm ³	
 Ran 15 × Silicon se Density c Total ene Results: 	10 ⁹ events v ensitive regi of Silicon us rgy deposite Dose r	with the be on is 101.6 ed = 2.33 g ed = 910 M rate = 0.01	eam generator 5 x 101.6 x 2.54 g/cm ³ /IeV	cm ³	

July 14th 2017

Overview

- * G4SBS simulation: addition / update of geometries
- * Recent background calculations for G_M^n ERR
- * Tracking
- * Summary

GEM tracking software

Currently adapting SoLID tracking software for SBS

 \rightarrow inclusion of the lastest version of the digitization code developed for SoLID, including more realistic avalanche model, cross talk, pedestal noise (courtesy from W. Xiong).

- → interfaced with TreeSearch, analyzer, etc...
- → Adapted to : BigBite GEMs, FT+FPPs, SIDIS SBS GEMs
- In ideal conditions (0 % bkg), track fitting works;

(don't understand the difference of efficiency between MIPs and QE e⁻

GEM tracking software

Currently adapting SoLID tracking software for SBS :

 \rightarrow inclusion of the lastest version of the digitization code developed for SoLID, including more realistic avalanche model, cross talk, pedestal noise (courtesy from W. Xiong).

- → interfaced with TreeSearch, analyzer, etc...
- In ideal conditions (0 % bkg), track fitting works;
- Issues adding background under investigation ;

July 14th 2017

Jefferson Lab

31

Overview

- * G4SBS simulation: addition / update of geometries
- * Recent background calculations for G_M^n ERR
- * Tracking
- * Summary

Summary

* Good progress on completing/updating g4sbs TODOs already listed above

* Studied extensively backgrounds and signal to background ratios for G_{M}^{n} at higher Q^{2} ;

* Tracking software has made good progress :

- **TODO :** \rightarrow solve pending issues, and finish debug the tracking;
 - $\rightarrow\,$ clean the background by cuts on timing, etc;
- $\rightarrow\,$ plug in external constraints (ECal cluster for BB GEMs, HCal cluster for FPPs, kinematic correlations for FT)

Thank you for your attention !

GEM, GRINCH background rates for G_M^n $Q^2 = 13.5 \text{ GeV}^2$, $I_{heam} = 44 \ \mu\text{A}$, 10 cm LD₂, NO SHIELDING

New setup, TOSCA field map: ~140kHz/cm² per GEM for INFN GEMs (front), 220kHz/cm², for UVA GEM (behind GRINCH) 70% from **target**, 4% from 48D48; 11% from beamline; 5% from scattering chamber;

Rates are rather high, but can be handled...

Overall rate for GRINCH in G_{LM}^n , $Q^2 = 13.5 \text{ GeV}^2$ (44 μ A): 3.446e+08 \pm 9.787e+06 Hz

345 MHz over detector => ~680kHz/PMT; not easy to deal with, but handleable;

=> 410 kHz (60%) from target;
55 kHz (8%) from 48D48 magnet;
135 kHz (20%) from beam line;
60 kHz (9%) from scattering chamber;

BB Ecal dose rate for G_{M}^{n} $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 44 \ \mu\text{A}$, 10 cm LD₂, NO SHIELDING

NB : Lead glass performance starts to deteriorate for cumulated radiation dose \geq 1kRad

July 14th 2017

Jefferson Lab

36

UVA GEM, GRINCH rates

Explaination for GRINCH, UVA GEM rates with TOSCA field map

37

Beamline shielding for G_{M}^{n}

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 44 \mu A$, 10 cm LD_2 , new setup, Tosca field map

Preliminary design:

ITERATION 2"

Lead plates 18" tall x 2" thick Trapezoidal "wood" shielding (NB I used polyethylene...) 50 em thick (min) x 4m tall x 3m long 1cm thickness lead

All detector rates for G_M^{n}

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 44 \mu A$, 10 cm LD_2 , new setup, Tosca field map

BB PS Anode current + Signal over background ratio (Channel per channel)

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 30 \ \mu\text{A}$, 15 cm LD_2 , new setup, Tosca field map

BB SH Anode current + Signal over background ratio (Channel per channel)

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 30 \ \mu\text{A}$, 15 cm LD_2 , new setup, Tosca field map

HCal response to 1 GeV neutrons

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 30 \ \mu\text{A}$, 15 cm LD_2 , new setup, Tosca field map

Energy MPV: **87 MeV** σ: **38 MeV** (sampling fraction ~1/11: similar to 8 GeV protons)

HCal response to 8 GeV protons

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 30 \ \mu\text{A}$, 15 cm LD_2 , new setup, Tosca field map

Protons, T = 8 GeV

Energy MPV: **609 MeV** σ: **142 MeV** (sampling fraction ~1/13:

similar to 1 GeV neutrons)

Tracking: ADC spectra Simulation vs cosmics data

Tracking: Threshold study

Tracking: hit resolution

0 % background