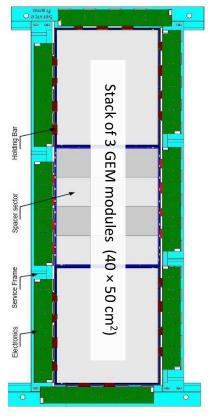


Status of Polarimeter GEMs

Kondo Gnanvo

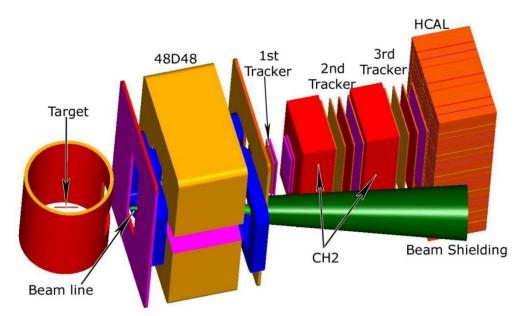
SBS Summer Collaboration Meeting 07/13/2017


Outline

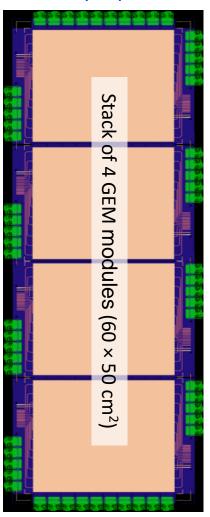
- Status of the Production
- Activities in the GEM "Clean" room space
- Preparation for GMn Experiment

Overview of SBS GEM Trackers modules

Front Tracker layer INFN (Rome, Catania)



Front Tracker (FT): Track of the recoil protons

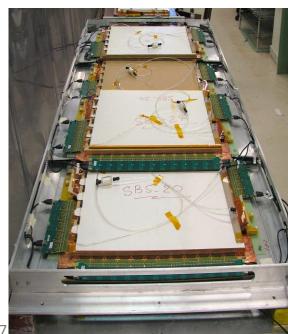

- ⇒ 1st tracker: 6 GEM layers, active area of 150 × 40 cm²
- ⇒ **Layer:** vertical stack of 3 GEM modules (50 × 40 cm²)
- ⇒ **Production:** 18 modules (+3 spares)

Back Tracker (BT): Polarimetry of the recoil protons

- ⇒ 2nd & 3rd Trackers: 2 × 5 layers, active area of 200 × 60 cm²
- ⇒ **Layer**: vertical stack of 4 GEM modules (60 × 50 cm²)
- ⇒ **Production:** 40 modules (+ 8 spares)

Back Tracker layer (UVa)

Hadron arm in GEp(5)



Production of GEM modules @ UVa

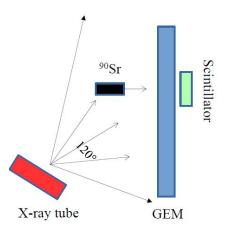
43 modules built and tested

- ⇒ 41 modules: 100% operational,
- ⇒ 2 modules: 97% OK (1 bad sector)
- 5 spare modules in the assembly queue
 - ⇒ 2 almost completed, all expected by August 2017
- 9 modules already moved to JLab in test lab
 - ⇒ 4 modules stored in GEM "clean" room, 5 modules on test beam stand
 - ⇒ Next shipment of 8 modules week July 17th
- All 10 Al frames for Uva GEM layers in store in test lab
 - ⇒ Frame prototype tested at UVa
 - ⇒ One frame will be fully instrumented with 4 modules and MPD electronics

Al Frame prototype with 4 UVa GEMs

Back Tracker modules @ UVa

Test of GEM modules @ UVa

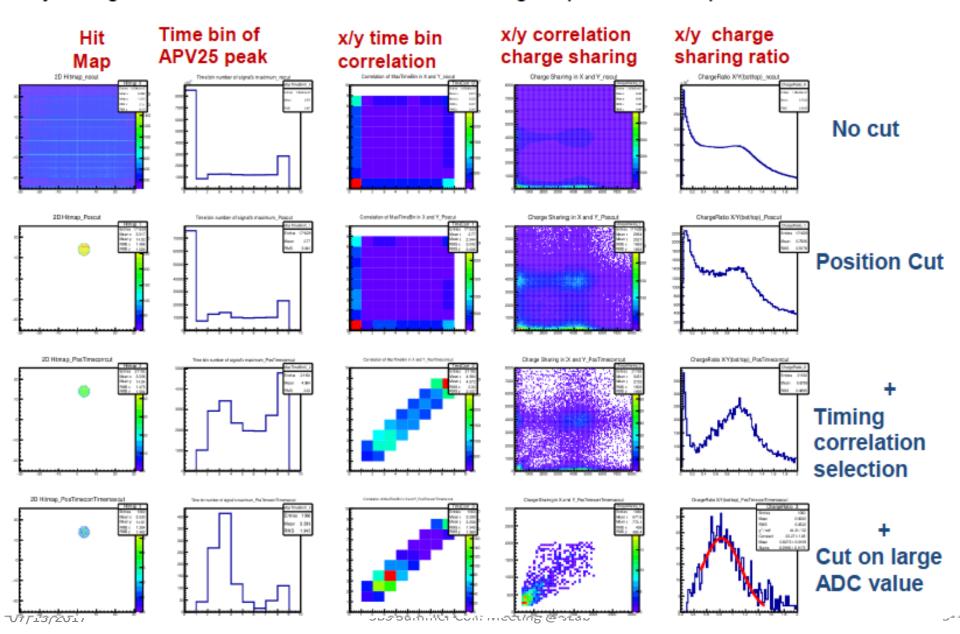

Cosmic stand setup

- ⇒ Test that the HV sectors are all operational
- ⇒ Data with 4 modules fully instrumented MPD electronic
- ⇒ Tracking efficiency studies

X-ray setup

- ⇒ Test the modules in high rate environment
- ⇒ Test DAQ in high rate and high background
- ⇒ Performance of x-ray background with Sr⁹⁰ as source

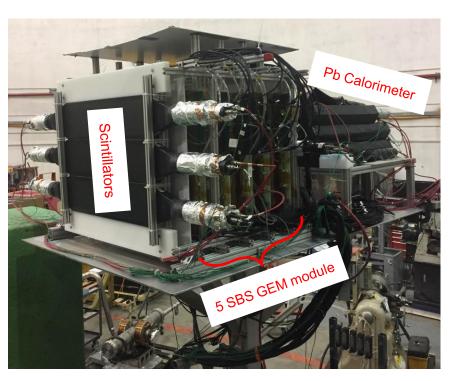
X-Ray setup @ UVa

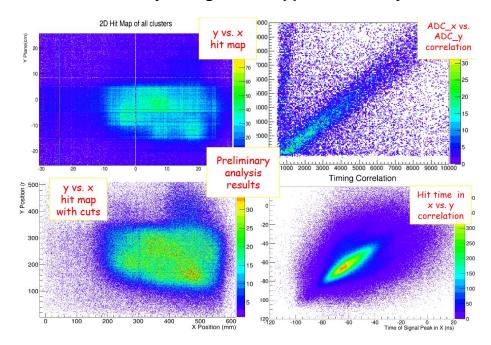


Cosmic stand @ UVa

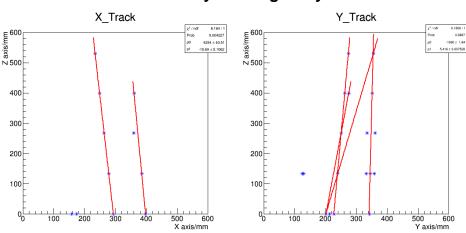
High rate studies: Various cuts applied to background

X-ray setting:11kV, 200uA. Hit rate: 25,000 Hz/cm², Charge deposition rate: equivalent to 0.44MHz MIPs




Polarimeter GEM modules in Beam Test in Hall A (Fall 2016)

Setup in Hall A @ JLab


- 5 modules separated by 10 cm each: similar to a SBS tracker configuration.
- Triggered by a lead-glass matrix at center
- Goals: Identify good tracks in a high rate,
 background, effectiveness of timing and charge
 correlation cuts to suppress background
- Placed at 70°, occupancy is ~ 1%, similar to GMn

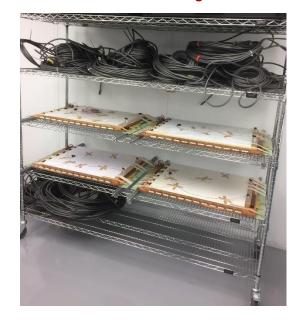
Preliminary background suppression analysis

Preliminary tracking analysis

Preparation for "Clean" Room space for SBS GEM modules

4 UVa modules on storage shelves

"Clean" room space for SBS GEM modules


- ⇒ Space allocated in the test lab for the storage of the GEMs modules
- ⇒ Migration of UVa GEM modules is ongoing
- ⇒ ⇒ First 4 modules arrive earlier this month
- ⇒ next 8 modules next week

Setup of a cosmic stand for GMn GEM trackers

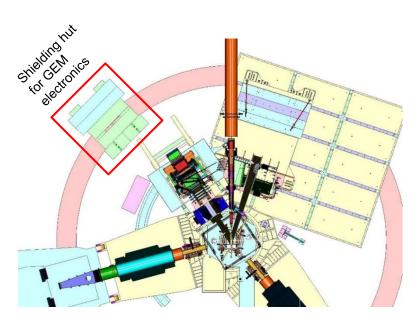
- ⇒ Goal: Have all 4 FT GEM layers (INFN) on the cosmic stand
- ⇒ One polarimeter UVa GEM layer on a separate setup
- ⇒ Cosmic data expected by 08/01/2017

Goal: Full characterisation of the GEM modules

- ⇒ Evaluate the dead area (disabled HV sector), study efficiency, define the working HV
- ⇒ gas flow for each module, Full readout performance DAQ

Preparation for cosmic stand setup

Standalone setup for UVa GEM layer frame


Preparation for GMn Experiment

GMn GEM Tracker: 4 layers

- Front Tracker layer: (150 cm x 40 cm) : 3 INFN modules
- 2 chambers already delivered @ Jlab, 2 on their way

One additional Back Tracker layer behind the GRINCH detector:

■ Back chamber layer (200 cm x 50 cm) : 4 UVa modules

2 VME crates for all 4 + 1 GEM layers

Front Tracker crate

16 MPDs (v4.0)

1 SSP

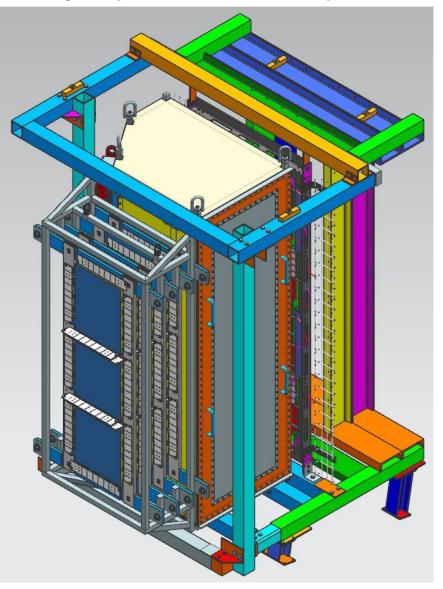
1 Trigger Supervisor

1 VME CPU or Controller

2 slots for HV PS

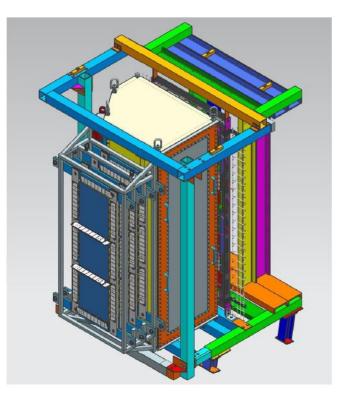
Back Tracker crate

7 MPDs (v.40)


1 SSP

1 Trigger Supervisor

1 VME CPU or Controller


1 slots for HV PS (or not)

Bigbite Spectrometer for the GMn experiment

Preparation for GMn: GEM Gas System

Gas mixture: 70% Ag+30%CO2 (premixed gas)

Front tracker (INFN, Italy):

4 blocks * 3 chambers=12 chambers 0.5 l/block/min*60min=30 l/block/hour 30 l/block/hour*4 blocks=120 l/hour

Second tracker (UVa):

1 blocks * 4 chambers/block=4 chambers 10 l/hour/chamber*4chambers=40 l/hour

For GEM totally: (120+40) l/hour ~ 160 l/hour $\sim 3,900$ l/day $\sim 120,000$ l/month

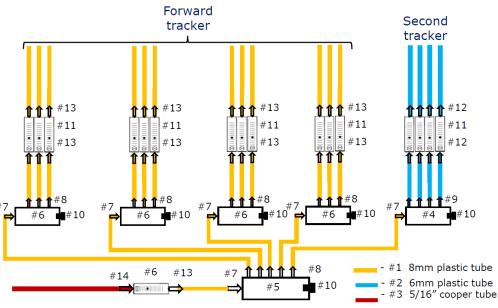
T-size gas cylinder consist of 335 ft³=9.29 m³ \sim 9,300 l of gas.

For 90% of gas from cylinder is used:

9,300*0.9~8,300 l/cyl.

 $120,000/8,300 \sim 15$ T- cylinders of gas is required for GEM operation per a month.

\$170/cyl *15~\$2.5K/month

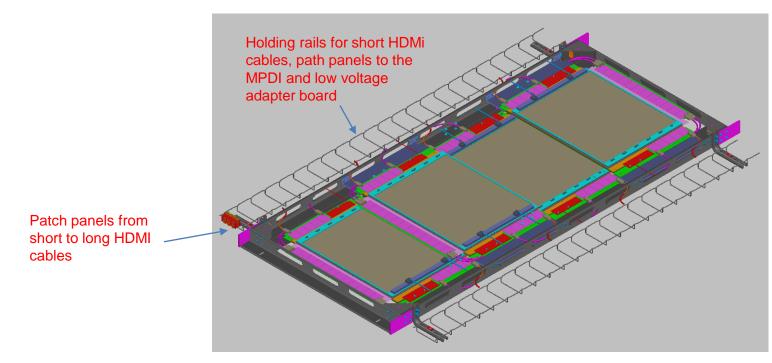

Preparation for GMn: GEM Gas System

An existing Hall A gas shed and gas delivery system can be used for GMn experiment.

System was tested (50 l/hour) at DVCS running period

GMn GEM GAS DISTRIBUTION SYSTEM (parallel forward tracker)

#	Cost, \$
Premixing gas	2,5K/months
Gas distribution system	4.5K
Total	~7.0K

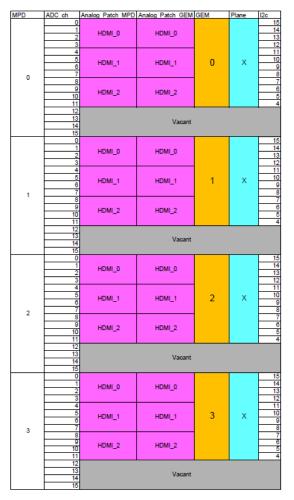

Consideration on HDM cables arangment for BT layer

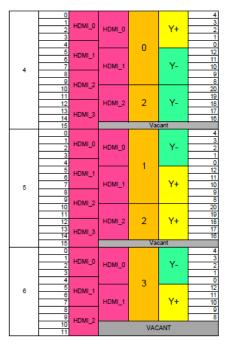
Cabling to the MPD electronics

- ⇒ 4 layers of BT layer read out with 4 MPD modules
- ⇒ Data and control signal through HDMI cables

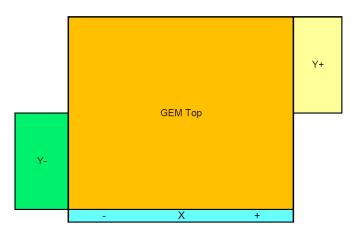
Two sets of HDMI cables:

- ⇒ Short cables (0.5 m to 3 m) from the back planes (GEM modules) to patch panel / connectors
 - ⇒ Need to decide if we use same length for all cables or adapt length to minimize cross talk, noise etc ...
 - ⇒ Try out pros / cons of different length approach with the layer in "clean" room before final decision
- ⇒ Long cables (minimum 8 m) from the patch panel / connectors to the MPD in shielding box
- ⇒ Connection between long and short cables through patch panel and HDMI to HDMI connector



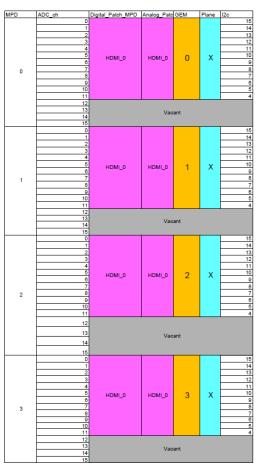


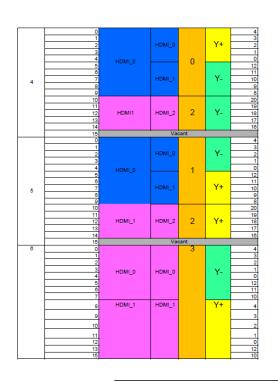
Preparation for GMn: HDMI cable arrangement for the BT GEM layer


Analog (data) signal

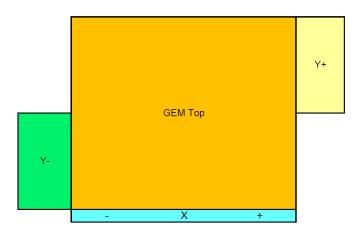
CABLES AND PATCH PANELS FOR ANALOG SIGNALS

- Minimize number of patch panels / maximize the one to one HDMI to HDMI connection
- Color coded arrangement:
 - Magenta: direct HDMI to HDMI connection
 - Red: 3-to-4 patch panels (analog signals)
 - Blue: 4-to-2 patch panels (digital signals)
 - Cyan: 12-slots backplanes
 - and green: 5-slots backplanes
 - Brown: BT GEM module


Number of MPDs	7 MPD for 4 GEM modules. 4 MPD reads X plane. 3 reads Y pla	ane
Long HDMI	23 analog $(3 \times 4 \text{ for } X, [2 \times 4] + [1 \times 3] \text{ for } Y)$, 10 digital (4 for X, 6 for Y) ,	Total = 33
Short HDMI	20 analog (3 × 4 for X, 2 × 4 for Y), 12 digital (4 for X and 2 × 4 for Y),	Total = 32
analog patch panel	3 × 3-to-4 for Y	Total = 3
digital Patch panel	1 × 4-to-2 for Y,	Total = 1
HDMI to HDMI 12 analog (3 × 4 for X), 8 digital (4 for X, 2×1 for Y, 2 for Y on GEM3), Total = 20		



Preparation for GMn: HDMI cable arrangement for the BT GEM layer


Digital (control) signal

CABLES AND PATCH PANELS FOR DIGITAL SIGNALS

- Minimize number of patch panels / maximize the one to one HDMI to HDMI connection
- Color coded arrangement:
 - Magenta: direct HDMI to HDMI connection
 - Red: 3-to-4 patch panels (analog signals)
 - Blue: 4-to-2 patch panels (digital signals)
 - Cyan: 12-slots backplanes
 - and green: 5-slots backplanes
 - Brown: BT GEM module

Number of MPDs	7 MPD for 4 GEM modules. 4 MPD reads X plane. 3 reads Y plane
Long HDMI	23 analog $(3 \times 4 \text{ for } X, [2 \times 4] + [1 \times 3] \text{ for } Y)$, 10 digital (4 for X, 6 for Y), Total = 33
Short HDMI	20 analog $(3 \times 4 \text{ for } X, 2 \times 4 \text{ for } Y)$, 12 digital $(4 \text{ for } X \text{ and } 2 \times 4 \text{ for } Y)$, Total = 32
analog patch panel	3 × 3-to-4 for Y Total = 3
digital Patch panel	1 × 4-to-2 for Y, Total = 1
HDMI to HDMI 12 analog (3 × 4 for X), 8 digital (4 for X, 2×1 for Y, 2 for Y on GEM3), Total = 20	

Summary

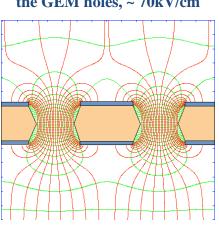
Production Status of Polarimeter GEM modules

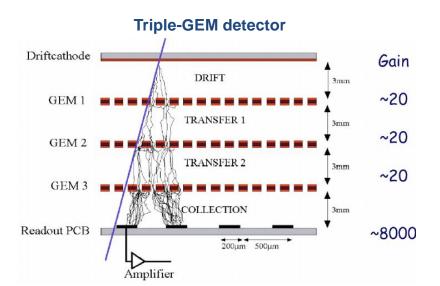
- ⇒ 43 modules already built and fully tested
- ⇒ construction of the last 5 to be completed by august 2017
- ⇒ 9 modules already move to Jlab, remaining to be moved by set of 8 in the next few weeks

Preparation and commissioning of SBS GEMs for GMn expeiment

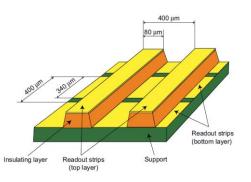
- ⇒ Acitivites in the clean room in full mode
- ⇒ Cosmic stand setup on going for the FT layers (4 INFN layers needed for GMn)
- ⇒ BT layer need for GMN in a standalone setup for test
- ⇒ Gas system need for the GMn GEMs has evaluated
- ⇒ GMn GEM electronic shielding box has been designed and scheme for optmal HDMl cabling is set
- ⇒ Cosmic test should be ready tp start in a few weeks

Backup


Why GEMs for Super Bigbite Spectrometer (SBS)?


- SBS require high rate and good spatial resolution in trackers.
- Gas Electron Multiplier (GEM) detectors provide a cost effective solution for high resolution tracking under high rates over large areas
 - ⇒ Rate capabilities higher than many MHz/cm², High position resolution (< 75 μm)
 - ⇒ Large areas (100s of m²) at modest cost, low thickness (~ 0.5% radiation length)
 - ⇒ Used for many experiments around the world: COMPASS, Bonus, KLOE, TOTEM, STAR FGT, ALICE TPC, pRad etc.
 - ⇒ Future experiments with GEMs: CMS Muon Chambers upgrade, SoLID Trackers, Moller, P2 @ Mainz, tracking at the EIC ...

GEM foil: 50 μm Kapton + few μm copper on both sides with 70 μm holes, 140 μm pitch



Strong electrostatic field in the GEM holes, ~ 70kV/cm

2D readout strips board

