

TDIS RTPC Simulation Studies Update

Rachel Montgomery SBS Collaboration Meeting, Jefferson Lab, 14/07/17

Outline:

RTPC Geometry

10001 1001

Method 1: Magboltz Parameterisation

n m

- Method 2: Garfield++ Interface
- Summary

RTPC for Recoil Proton Detection

NIM A592 (2008) 273

TDIS RTPC:

- Based on RTPC from Hall B BONUS, CLAS eg6
- Length 40cm; radius 15cm; drift 5cm to 15cm
- Gas: 90% He, 10% CH₄, temp 77K; pressure 0.15atm
- Electric field ~500V/cm in drift region
- Triple layer cylindrical GEMs at r=15cm
- GEM readout: UV strips, 21.25mm length, pitch 1mm
- Angular resolution 0.2°; coordinate resolution <1mm; time resolution 10ns
- Large angular & kinematic coverage, low-momentum reach

Geant4 RTPC Geometry Updates

- Realistic RTPC Geant4 geometry developed (J. Annand)
- Most recent updates (2v4):
 - exit beam pipe/more beam line material, extra RTPC casing, curved target exit window, curved spherical AI exit wall, Geant4 TOSCA chord finding algorithm
- Background soft proton rate very high, especially with ²H target (MHz)
- Drift e⁻ simulations within RTPC (drift times, coverage)
 - 1. parameterisation using Magboltz
 - 2. Garfield++

Geant4 to track protons and energy deposit in RTPC

- Protons generated using Monte Carlo event generator
- 3 momenta (matching background studies): 100, 250, 400 MeV/c
- θ =30 70° (TDIS range of interest), along length of target

University of Glasgow

<u>Magboltz</u>

- Solves Boltzmann transport equations for e⁻ in gases under E and B fields
- Drift velocities vd, Lorentz angles, transverse diffusion...
- v_d in 3 components: E, ExB, (B=0)

Drift Velocity Map

- v_d for every (r, z) of TOSCA solenoid map
- Nominal settings: He 90%, CH₄ 10%, 77K; 0.15atm

Gas Mix

(90:10)

⁴He:CH₄

⁴He:CH₄

⁴He:DME

Temp.

(K)

77

293

293

434

434

2.589

4.346

• E = 500V/cm; B = 4.7T; θ_{EB} = 90°

nap 77K: 0.15atm		15 10 RTPC volume 5				
,		0 <mark>0 10</mark>	20	30	40	
Pressure (Torr)	v _d E (µm/ns)	v₀ ExE (µm/ns)	3			
114	2.586	9.853				

9.852

8.340

Field Strength [kG] 15 15 16 16 17 18 18 19 10 10 20 30 40 50 60

Parameterisation

- Proton tracked step by step in Geant4
- If dE/dR > threshold for ID as proton \rightarrow ionisation assumed
- Drift velocity map interpolated at (r,z) to find v_{d} vectors
- Change in path calculated in 1ns time step
- Repeated until GEM reached

Nominal Settings: ⁴He:CH₄ (90:10), 77K, 0.15atm B-Field = TOSCA map, E-Field = 500V/cm static

- Limit ~38µs for max drift distance
- Matches crude estimate from radial distance 10cm and Magboltz v_d along E = 2.586 µm/ns

Method 1: Drift Paths and Drift Times

- 90:10 gas mix optimal
- Room temperature and increase pressure does not affect drift times
- DME mix faster for room temp, smaller Lorentz angle, not accounted for different molar masses, 77K<boiling point

R. Montgomery, SBS Meeting, 14/07/17

- Increased field in decreases drift times
- 18µs with 800V/cm
- 10µs with 1200V/cm
- Upgrade to 1/r E-field dependence
- Worked for <=5kV between r=5cm and 15cm, above this requires further study due to trapping/curling effects

Method 1: Hit Readout Strip Estimations

Proton background rates

Target	θ_p	$70 < p_p < 250$	$p_p > 250$	$150 < p_p < 400$
	(deg.)	(MHz)	(MHz)	(MHz)
$^{1}\mathrm{H}$	30 - 70	2.3	7.4	6.3
^{2}H	30 - 70	357	20.1	64
^{2}H	100 - 140	204	3.1	-
^{27}Al	30 - 70	0.37	0.0	0.05
^{27}Al	100 - 140	0.10	0.0	-

- Phi coverage of entire ionising proton step in G4
- Total strips summed per proton for each event
- Using ~17 974 strips per U/V layer (817 φ, 22 z)
- <u>E.g.: 100MeV/c, 30-70°, single U/V layer:</u>
- ¹H, 2.3MHz, assume 10µs achievable:
- 2.3MHz * 20μ s * $132 = 3.04 \times 10^3$ strips
- 6.07×10³/17 974 = 0.17 hits/strip
- 10µs/0.45 = ~59µs between hits
- ²H, 357MHz:
- 357MHz * 10µs * 132 = 4.7 ×10⁵ strips
- 26 hits/strip; 381ns between hits
- Numbers could be corrected for coincidence time window for e' in BigBite, DIS rate...
- Factors for study to reduce high strip hits:
 - E-field set-up
 - In-active fins to stop p/e⁻ curling
 - Altering Position in solenoid

- · Changing RTPC position in solenoid will reduce number of readout strips hit
- · Main trade-off will be loss in momentum resolution

Garfield Model:

~500V/cm; He:CH₄ 90:10; 77K; 0.15atm

Proton G4 PAI e-Garfield++ GEM

<u>Garfield++</u>

- Heed ionisation
- *Magboltz* e⁻ drift properties
- Garfield++ drift paths of e⁻
- Energy deposit/transfer with Heed not appropriate for TDIS proton (KE<10MeV)
 - implemented photo-absorption and ionisation (PAI) model in G4 creation of ionisation
 - Energy loss/ionisation yield still likely not accurate, must be checked with data, but e⁻ drifts by Garfield++ well-modelled
- RTPC designated G4Region:
 - Proton creates ionisation using G4 PAI
 - e⁻ killed in G4 and drifted by Garfield++
- TOSCA field map interpolated to find B at initial e⁻ point
- E field from Garfield++ model

Method 2: Drift Paths and Drift Times

R. Montgomery, SBS Meeting, 14/07/17

- Drift results extremely sensitive to E-field set-up
- Final config will define times
- Must be studied further to optimise drifts
- Implementations with ring of 127µm diameter field wires

R. Montgomery, SBS Meeting, 14/07/17

Method 2: Hit Readout Strip Estimations

Mom. (MeV/c)	<i>Mean Number of Strips Hit per Proton</i>	<i>Occupancy in Each U/V Layer per Proton (%)</i>
100	149	0.83
250	22	0.12
400	11	0.06

- End point of drifted electron used to determine hit strip ID
- Number of different strips hit/proton summed
- Similar numbers to method 1, cross-check

- Eg: 100MeV/c, 30-70°, single U/V layer:
- ¹H, 2.3MHz, assume 10µs achievable:
- 2.3MHz * 10µs * 149 = 3.43×10³ strips
- 3.43×10³ / 17 974 = 0.19 hits/strip
- 10µs/0.19 = ~53µs between hits
- ²H, 357MHz:
- 357MHz * 10µs * 149 = 5.3 ×10⁵ strips
- 30 hits/strip; 333ns between hits

Proton background rates

Target	θ_p	$70 < p_p < 250$	$p_p > 250$	$150 < p_p < 400$
	(deg.)	(MHz)	(MHz)	(MHz)
^{1}H	30 - 70	2.3	7.4	6.3
^{2}H	30 - 70	357	20.1	64
^{2}H	100 - 140	204	3.1	-
²⁷ Al	30 - 70	0.37	0.0	0.05
²⁷ Al	100 - 140	0.10	0.0	-

- TDIS event generator from K. Park used to track protons, lambdas, pions through RTPC geometry
- Used to study geometrical acceptance for kaon SF proposal determined by proton acceptance

- Updates to realistic Geant4 geometry (2v4)
- 2 drift simulations tested:
 - Parameterisation based on Magboltz
 - Garfield++
- Nominal conditions yield long drift times, optimising E-field will reduce this
- Occupancies will be high for ²H, possible avenues to reducing this:
 - Drift time reductions, fins to stop curling, position in solenoid, RTPC geometry
- Garfield++ would yield several advantages:
 - PAI model implemented, but verification of ionisation yield needs data
 - Results are **extremely sensitive** to electric/magnetic field important future step is more realistic field set-up/studies using finite element analysis software
- Optimisations beginning...

 $150 < p_p < 400$

(MHz)

6.3

64

0.05

_

p2d

78.9

28.63

52.91

10²

10

 $p_p > 250$

(MHz)

7.4

20.1

3.1

0.0

0.0

Entries 206288

Mean x

Mean v 92.8

RMS x

RMS

160 180

- Moeller electrons mostly contained by solenoid
- Dominant background proton production by photonuclear processes
- ¹H target: mostly removed after quasi-elastic cuts.
- ²H target: accidentals separation using time/vertex reconstruction (SBS +RTPC)

- Stand-alone BONUS RTPC Garfield++ to cross-check
- Values for comparison from literature
- NIM paper doi:10.016/j.nima.2008.04.047; N. Baillie, J. Zhang theses
- Max. drift time from cathode to GEM ~6µs
- Gas: He 80%, DME 20%; 300K; 1atm
- Inner r=3cm; outer r=6cm; length 20cm
- Magnetic field -4T
- E-field: ~500V/cm in drift region, 800V/cm cathode, 400V/cm 1st GEM
- Typical momentum 70MeV/c

