INTRO

CALIBRATIONS

Analysis 00000000 PRELIMINARY RESULTS

APPENDIX 000000

SBS Collaboration Meeting

Freddy Obrecht University of Connecticut

July 13, 2017

UCONN

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 9 4 で
1/32

Intro	E02-013	CALIBRATIONS	ANALYSIS	PRELIMINARY RESULTS	Appendix
0 00	00000000	000	00000000	00	000000

INTRODUCTION

- ► A brief introduction to the physics goals of E02-013, otherwise known as Gⁿ_E
- Description of the experimental apparatus
- Brief discussion of selected calibration procedures
- Analysis of G_E^n
- Preliminary results of G_E^n at $Q^2 = 1.16 \text{ GeV}^2$

NUCLEON FORM FACTORS

 Nucleon form factors arise by generalizing the typical vertex factor -*ieγ^μ* in OPEX:

$$\Gamma^{\nu} = \gamma^{\nu} F_1(q^2) + \frac{i\sigma^{\nu\alpha}q_{\alpha}}{2M} F_2(q^2)$$

An unpolarized calculation incorporating the nucleon structure results in the Rosenbluth formula:

$$\frac{d\sigma}{d\Omega}\Big|_{\text{LAB}} = \frac{\alpha^2 \cos^2 \frac{\theta_e}{2}}{4E_e^2 \sin^4 \frac{\theta_e}{2}} \frac{E'_e}{E_e} \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta_e}{2} \right]$$

$$G_E(Q^2) = F_1(Q^2) - \tau F_2(Q^2)$$

$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$

3/32

 INTRO
 E02-013
 CALIBRATIONS
 ANALYSIS
 PRELIMINARY RESULTS
 APPENDIX

 00●
 00000000
 000
 00000000
 00
 0000000

BEAM-TARGET ASYMMETRY EXTRACTION

Polarize beam and target, and an asymmetry arises by flipping the beam helicity $h = \pm 1$: $A_{\text{phys}} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}}$ $= -\frac{2\sqrt{\tau(1+\tau)}\tan\frac{\theta_{e}}{2}}{G_{E}^{2} + \frac{\tau}{\epsilon}G_{M}^{2}} \left\{ G_{E}G_{M}P_{x} + \sqrt{\tau \left[1 + (1+\tau)\tan^{2}\frac{\theta_{e}}{2}\right]}G_{M}^{2}P_{z} \right\}$

•
$$P_x = \sin \theta^* \cos \phi^*$$
 and $P_z = \cos \theta^*$
• Extract $\Lambda \equiv \frac{G_E}{G_M}$ if $\theta^* = \pi/2$ and $\phi^* = 0$ or 180°

= = = = = = = = 4 / 32

INTRODUCTION TO E02-013

- ► Goal is to extract Gⁿ_E via a beam-target helicity asymmetry using the semi-exclusive reaction ³He(e, e'n)pp
- ► Ran in JLab's Hall A, and production took place from 3/01/2006 5/09/2006
- ► The double-arm coincidence experiment took data at four *Q*² configurations:

$Q^2 [\text{GeV}^2]$	Days	E _b [GeV]	θ_{BB} [deg]	$\theta_{\rm NA}$ [deg]
1.16	8	1.519	-56.3	35.74
1.72	9	2.079	-51.6	35.74
2.48	19	2.640	-51.6	30.25
3.41	33	3.291	-51.6	25.63

Table: Kinematic configurations of E02-013.

Intro 000	E02-013 0000000	Calibrations 000	Analysis 00000000	PRELIMINARY RESULTS	Appendix 000000
	PRI 105 262302 (2010)	PHYSICAL	REVIEW LETTER	S week ending	
	TRE 100, 202002 (2010)			- ST DECEMBER 2010	

Measurements of the Electric Form Factor of the Neutron up to $Q^2 = 3.4 \text{ GeV}^2$ Using the Reaction ${}^3\vec{\text{He}}(\vec{e}, e'n)pp$

S. Riordan,^{1,2,3} S. Abrahamyan,⁴ B. Craver,² A. Kelleher,⁵ A. Kolarkar,⁶ J. Miller,⁷ G. D. Cates,² N. Liyanage,²
B. Wojtsekhowski,^{8,*} A. Acha,⁹ K. Allada,⁶ B. Anderson,¹⁰ K. A. Aniol,¹¹ J. R. M. Annand,¹² J. Arrington,¹³ T. Averett,⁵
A. Beck,^{14,8} M. Bellis,¹ W. Boeglin,⁹ H. Breuer,⁷ J. R. Calarco,¹⁵ A. Camsonne,⁸ J. P. Chen,⁸ E. Chudakov,⁸ L. Coman,⁹
B. Crowe,¹⁶ F. Cusano,¹⁷ D. Day,² P. Degtyarenko,⁸ P. A. M. Dolph,² C. Dutta,⁶ C. Ferti,¹⁸ C. Fernández-Ramírez,¹⁹
R. Feuerbach,^{8,5} L. M. Fraile,¹⁹ G. Franklin,¹ S. Frullani,¹⁷ S. Fuchs,⁵ F. Garibaldi,¹⁷ N. Gevorgyan,⁴ R. Gilman,^{20,8}
A. Glamazdin,²¹ J. Gomez,⁸ K. Grimm,⁵ J.-O. Hansen,⁸ J. L. Herraiz,¹⁹ D. W. Higinbotham,⁸ R. Holmes,²² T. Holmstrom,⁵
D. Howell,²³ C. W. de Jager,⁸ X. Jiang,²⁰ M. K. Jones,⁸ J. Katich,⁵ L. J. Kaufman,³ M. Khandaker,²⁴ J. J. Kelly,^{7,7}
D. Kiselev,²⁵ W. Korsch,⁶ J. LeRose,⁸ R. Lindgren,² P. Markowitz,⁹ D. J. Margaziotis,¹¹ S. May-Tal Beck,^{14,8} S. Majilyan,⁴
K. McCormick,²⁶ Z.-E. Meziani,²⁷ R. Michaels,⁸ B. Moffit,⁵ S. Nanda,⁸ V. Nelyubin,² T. Ngo,¹¹ D. M. Nikolenko,²⁸
B. Norum,² L. Penchtev,⁵ C. F. Perdrisat,⁵ E. Piasetzky,²⁰ R. Pomatsalyuk,¹¹ D. Penchtev,¹² A. J. R. Purckett,¹⁴
V. A. Punjabi,²⁴ X. Qian,³⁰ Y. Qiang,¹⁴ B. Quinn,¹ L. Rachek,²⁸ R. D. Ransome,²⁰ D. B. Reitze,⁸ J. Roche,⁸
G. Ron,²⁹ O. Rondon,² G. Rosner,¹² A. Saha,⁸ M. M. Sargsian,⁹ B. Sawatzky,²⁷ J. Segal,⁸ M. Shabestari,² A. Shahinyan,⁴
Yu. Shestakov,²⁸ J. Singh,² S. Širca,¹⁴ P. Souder,²² S. Stepanyan,³¹ V. Stibunov,³² V. Sulkosky,⁵ S. Tajima,² W. A. Tobias,² J. M. Udias,¹⁹ G. M. Urciuoli,¹⁷ B. Nudohovic,¹⁶ H. Voskanyan,⁴ K. Kwang,² F. R. Wesselmann,²⁴ J. R. Vignote,³³ S. Mcods,⁸ J. Singh,² S. Sirca, ¹⁴ P. Souder,²² S. Stepanyan,

Spokespeople:

- Gordan Cates University of Virginia
- Nilanga Liyanage University of Virginia
- Bogdan Wojtsekhowski Jefferson Lab

 INTRO
 E02-013
 CALIBRATIONS
 ANALYSIS
 PRELIMINARY RESULTS
 APPENDIX

 000
 00000000
 000
 00000000
 00
 0000000

GEOMETRY OVERVIEW

TARGETS OF E02-013

- Polarized ³He is used as an effective neutron target as the symmetric S-state dominates the ground-state in which proton spins tend to cancel
 ⇒ ~ 86% of the nuclear spin is carried by the neutron
- Hybrid spin-exchange optical pumping (alkali vapors Rb and K) was used to polarize the ³He target
- ► Target cells exceeded polarizations of 50%, operating at a pressure of ~ 10 atm with a beam current of 8µA
- ► Other targets included BeO-C foils and an empty ref. cell that may be filled with H₂ / N₂
- Targets are mounted to a ladder which is suspended in a 0.25" thick iron "target-box"

 INTRO
 E02-013
 CALIBRATIONS
 ANALYSIS
 PRELIMINARY RESULTS
 APPENDIX

 000
 00000000
 000
 000
 000
 0000000

THE BIGBITE SPECTROMETER

- ► The purpose is to measure the four momentum of the quasielastically scattered electron
- ► BigBite is a large dipole magnet that subtends ~ 76 msr and accepts scattered e⁻ in the range 0.6
- Three multiwire drift chambers (15 wire planes) reconstruct the scattered track post magnetic deflection
- A segmented lead-glass preshower + shower package for triggering and pion rejection. Can reconstruct track energy and is used to confine search region of track recon.
- A hodoscope consisting of 13 scintillator paddles (resolution of 35 ps/channel) is used for event timing information

THE NEUTRON DETECTOR

- The purpose is to measure the momentum of the recoiling nucleons in coincidence via ToF and to identify the charge
- ► Designed to match the acceptance of BigBite at the largest Q^2 point
- ► A time of flight resolution of 300 ps has been obtained
- Detector consists of two "veto" layers (charge ID) and seven neutron layers (ToF)
- The veto layers are built out of 48 rows of long/short scintillating bars with two PMTs per row
- The neutron layers consist of rows of scintillating bars (1 per row) with two PMTs per row

96 (= 2×48) modules in the veto layers (V1-V2) and 244 $(= 29 + 25 + 30 + 25 + 3 \times 45)$ neutron bars for a total of 340. E

590

APPENDIX

CALIBRATION OF BIGBITE CALORIMETER

- ► There are 243 PS and SH blocks, 54 and 189, respectively.
- ► The best set of gain coefficients may be found by a χ²-minimization procedure:

$$\chi^2 = \sum_{i=1}^N \left(E_e^i - \sum_{k=0}^M C_k A_k^i \right)^2$$

- E_e^i is the reconstructed BB optics energy for event *i*, A_k is the ADC amplitude for block *k* of cluster size *M*, and C_k are the desired coefficients in units of MeV/ADC
- ► Minimizing χ^2 with respect to C_k results in a system of 243 linear equations.

 INTRO
 E02-013
 Calibrations
 Analysis
 Preliminary Results
 Appendix

 000
 0000000
 0●0
 0000000
 00
 0000000
 0000000

BEFORE AND AFTER CALIBRATIONS

14/32

SELECTED CALIBRATIONS SUMMARY

- 1. Vertex resolution $\sigma_{v_z} \approx 6.5$ mm, BeO-C foil data
- 2. BigBite optics momentum resolution $\delta p/p = 1\%$, H₂ data
- 3. BigBite calorimeter resolution $\delta E/E = 7.5\%$, H₂ data
- 4. NA ToF resolution $\delta t = 300 \text{ ps}$, H₂ + ³He data

INTRO	E02-013	Calibrations	ANALYSIS	PRELIMINARY RESULTS	Appendix
000	0000000	000	●0000000	00	000000
					i i i i i i i i i i i i i i i i i i i

MAJOR GOALS OF THE ANALYSIS

Q^2 [GeV ²]	<i>p</i> _{<i>e</i>⁻} [GeV]	p_n [GeV]	β_n	ToF [ns]
1.16	0.86	1.3	0.8	37.5

- Find BigBite tracks and reconstruct the interaction vertex and momentum
- Reconstruct nucleon cluster, associate it to a NA track, and calculate the ToF
- ► Identify and select the quasielastic region
- Associate a nucleon cluster to veto hits and ID the charge
- Construct the raw asymmetry
- ► Remove contaminations or dilutions, *e.g.* accidental background, pions, inelastics, FSI, scattering from N₂ in the target cell, or events where the nucleon charge has been misidentified.

QUASIELASTIC SELECTION

- Need to select the quasielastic region to the best of our ability, hints from H₂ data are invaluable
- Remove target cell windows with $-0.17 < v_z < 0.17$ m
- ► Suppress pion events with *E*_{preshower} > 150 MeV
- Invariant mass:

$$W^2 = (p_{i,nuc} + q)^2 \Rightarrow W = \sqrt{M^2 - Q^2 + 2M(E_e - E_e)}$$

•
$$p_{\text{miss},\parallel} = (q - p_{\text{na}}) \cdot q$$

•
$$p_{\text{miss},\perp} = |\vec{q} - \vec{p}_{\text{na}} - p_{\text{miss},\parallel} \hat{q}|$$

•
$$m_{\text{miss}}^2 = (P_{i,3\text{He}} + q - p_{\text{NA}})^2$$

Notes: For W, initial nucleon is at rest. For missing mass, initial ³He is free and at rest.

INTRO	E02-013	CALIBRATIONS	ANALYSIS	PRELIMINARY RESULTS	Appendix
000	0000000	000	0000000	00	000000

QUASIELASTIC SELECTION

うくで 18/32
 INTRO
 E02-013
 CALIBRATIONS

 000
 0000000
 000

ANALYSIS

PRELIMINARY RESULTS

Appendix 000000

CHARGE IDENTIFICATION

Side view of ND depicting the ideal scenario of charge ID. The recoiling nucleons have an energy of 1.3 GeV prior to entering the detector.

BACKGROUND SUBTRACTION

• Shift data in time before QE cuts are applied \Rightarrow adjust β :

$$\beta_{\rm bk} = rac{1}{rac{1}{\beta_{\rm QE}} + 0.8} pprox 0.5 \quad \Rightarrow \quad \beta_{\rm bk}^{-1} = 2$$

where 0.8 is a shift parameter and $\beta_{QE} = 0.8$.

► Apply QE cuts, and the result is random background

Intro	E02-013	CALIBRATIONS	ANALYSIS	PRELIMINARY RESULTS	Appendix
000	0000000	000	000000000	00	000000

RAW ASYMMETRY

Top Panel:

- BB single arm trigger rate T2 is sensitive to beam helicity
- Total sign = (target sign)×(precession sign)×(HWP sign)

Bottom Panel:

- Background corrected raw asymmetry
- Need to apply additional corrections to remove unwanted events

Intro	E02-013	CALIBRATIONS	ANALYSIS	PRELIMINARY RESULTS	Appendix
000	0000000	000	0000000	00	000000

NITROGEN DILUTION

▶ No N₂ data \Rightarrow use C foils and exclude the BeO foil

$$D_{N_2} = 1 - \frac{\Sigma(C) - \Sigma_{back}(C)}{\Sigma - \Sigma_{back}} \frac{Q(^3He)}{Q(C)} \frac{\rho_{N_2}(^3He)}{\rho_C(C)} \frac{t_{^3He}}{t_C}$$

୬ < ୯ 22 / 32

REMAINING CORRECTIONS

- Correct for target and beam polarization
- Proton contamination is evaluated by studying the uncharged-to-charged ratios of H₂, ³He, and foil data
- Preshower pion contamination has been estimated with Monte Carlo
- Inelastic contribution is expected to be small (to do list)
- Final state interactions estimated with generalized eikonal approximation calculations (to do list)

Intro 000	E02-013 00000000	Calibrations 000	ANALYSIS PRELIMINARY RESULTS AP	PENDIX
	$\overline{\langle Q^2 angle [{ m GeV}^2]}$	1.16	Remarks	
	W [GeV]	0.8 - 1.15	Invariant Mass	
	p⊥ [MeV]	< 150	Missing \perp momentum	
	p∥ [MeV]	< 250	Missing momentum	
	m _{miss} [GeV]	< 2	Missing mass	
	D _{back}	0.949 ± 0.029	Accidental background	
	D_{N_2}	0.947 ± 0.004	Nitrogen in target	
	Dp	0.812 ± 0.016	Proton contamination	
	D _{in}	0.980 ± 0.011	Inelastic contamination	
	Pbeam	0.852 ± 0.055	Beam polarization	
	P _{He}	0.416 ± 0.019	Average polarization ³ He nuclei	
	P _n	0.978 ± 0.010	Neutron polarization in target	

Table: Numbers used in preliminary calculation of G_E^n .

Intro 000	E	02-013 CALIBR	ATIONS ANALYSIS	PRELIMINARY RESU	LTS APPENDIX 000000
	$\langle Q^2 \rangle$	1.16	1.72	2.48	3.41
	W	0.8 - 1.15	0.7 - 1.15	0.65 - 1.15	0.6 - 1.15
	\mathbf{p}_{\perp}	< 150	< 150	< 150	< 150
	₽∥	< 250	< 250	< 250	< 400
	m _{miss}	< 2	< 2	< 2	< 2.2
	D _{back}	0.949 ± 0.029	0.970	0.981	0.975
	D_{N_2}	0.947 ± 0.004	0.948	0.949	0.924
	D_p	0.812 ± 0.016	0.782 ± 0.033	0.797 ± 0.036	0.807 ± 0.032
	D _{in}	0.980 ± 0.011	0.980 ± 0.011	0.963 ± 0.027	0.851 ± 0.060
	P _{beam}	0.852 ± 0.055	0.852 ± 0.055	0.850 ± 0.031	0.829 ± 0.026

Table: Errors for higher Q^2 are systematic contributions as a fraction of the G_E^n value as seen in 2010 Riordan *et al.* PRL. Other ~ 0.025

 0.975 ± 0.033 0.975 ± 0.024

 0.416 ± 0.019 0.470 ± 0.076 0.439 ± 0.059

PHe

Pn

 0.978 ± 0.010

 0.462 ± 0.047

 0.975 ± 0.016

INTRO	E02-013	CALIBRATIONS	ANALYSIS	PRELIMINARY RESULTS	Appendix
000	0000000	000	0000000	00	000000

Appendix

< □ ト < □ ト < 亘 ト < 亘 ト < 亘 ト < 亘 か < ⊙ < ○ 26 / 32

Intro	E02-013	CALIBRATIONS	ANALYSIS	PRELIMINARY RESULTS	Appendix
000	0000000	000	0000000	00	00000

VERTEX RESOLUTION

MOMENTUM RESOLUTION

BB ENERGY RESOLUTION

<□ ト < □ ト < □ ト < 臣 ト < 臣 ト 三 の Q (~ 29 / 32)
 INTRO
 E02-013
 Calibrations
 Analysis
 Preliminary Results
 Appendix

 000
 00000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</

NA TOF RESOLUTION

<□ ト < □ ト < □ ト < 三 ト < 三 ト < 三 ト ○ Q (~ 30 / 32)

Intro	E02-013	CALIBRATIONS	ANALYSIS	PRELIMINARY RESULTS	APPENDIX
000	0000000	000	0000000	00	000000

CORRECTIONS

Corrections

- Accidental Background: 2%
- Nitrogen dilution: 5%
- Misidentified protons: 20%
 - Evaluated through data and Geant4 monte carlo
- Inelastic Events: 0 15%
 - Evaluated through Geant4 monte carlo + MAID
- Nuclear effects + FSI: 5%

Seamus Riordan — SBS Review, March 2012 G2-II 21/44

Figure: S. Riordan 2012 SBS Review

Intro	E02-013	CALIBRATIONS	ANALYSIS	PRELIMINARY RESULTS	Appendix
000	0000000	000	0000000	00	000000

IN CASE I FORGET...

$$t_{\text{ToF,ex}} = \frac{\ell}{c} \sqrt{1 + \left(\frac{M}{|\vec{q}|}\right)^2}$$
$$\beta = \frac{v}{c} = \frac{|\vec{\ell}|}{c t_{\text{ToF}}}$$
$$p_{\text{na}} = \frac{M\beta}{\sqrt{1 - \beta^2}}$$
$$\delta p = \frac{Mc\beta^2}{\ell} \left(\frac{1}{(1 - \beta^2)^{\frac{3}{2}}}\right) \delta t$$

< □ ト < □ ト < 亘 ト < 亘 ト < 亘 ト < 亘 か < ⊙ < ⊙ < 32 / 32</p>