TPE Measurement with SBS

Ethan Cline ethan.cline@stonybrook.edu

Center for Frontiers in Nuclear Science

Department of Physics and Astronomy Stony Brook University

SBS Collaboration Meeting

February 18, 2021

Positron Source at JLab and Whitepaper

- Proposed positron source at JLab
- Several whitepapers written https://arxiv.org/pdf/2007.15081.pdf
- What physics can be done with e^{\pm} at JLab?
- Many ideas, will focus on those involving SBS/BB
- Upcoming topical issue in EPJA

An Experimental Program with Positron Beams at Jefferson Lab

A. Accardi^{1,39}, A. Afanasev³, I. Albayrak⁴¹, S.F. Ali⁵⁶, M. Amaryan¹⁷, J.R.M. Annand³⁷, J. Arrinoton¹¹. A Asaturyan⁵⁹, H. Avakian¹, T. Averett⁵⁷, C. Averbe Gavoso¹⁵, L. Barion³², M. Battaolieri^{1,9} V. Bellini²⁸, F. Benmokhtar⁴⁸, V. Berdnikov⁵⁶, J.C. Bernauer^{20,22}, A. Bianconi^{27,45}, A. Biselli³¹ M. Boer²⁹, M. Bondi⁹, K.-T. Brinkmann³⁴, W.J. Briscoe³, V. Burkert¹, T. Cao³⁹, A. Camsonne¹ R. Capobianco²¹, L. Cardman¹, M. Carmignotto¹, M. Caudron², L. Causse², A. Celentano⁹, P. Chatagnon², T. Chetry¹⁵, G. Ciullo^{32,33}, E. Cline²⁰, P.L. Cole²⁴, M. Contalbrigo³², G. Costantini^{27,45} A. D'Angelo^{52,53}, D. Day⁵, M. Defurne³⁵, M. De Napoli²⁸, A. Deur¹, R. De Vita⁹, N. D'Hose³⁵, S. Diehl^{21,34}, M. Diefenthaler¹, B. Dongwi³⁹, R. Dupré², D. Dutta¹⁵, M. Ehrhart², L. El-Fassi¹⁵, L. Elouadrhiri¹, R. Ent¹, J. Erler^{13,14}, I.P. Fernando³⁹, A. Filippi⁵⁵, D. Flav¹, T. Forest⁴⁹, E. Fuchev²¹ S. Fucini¹⁸, Y. Furletova¹, H. Gao⁷, D. Gaskell¹, A. Gasparian³⁸, T. Gautam³⁹, F-X. Girod²¹ J. Grames¹, P. Gueve³⁰, M. Guidal², S. Habet², D.J. Hamilton³⁷, O. Hansen¹, D. Hasell⁴, M. Hattawy¹⁷, D.W. Higinbotham¹, A. Hobart², T. Horn⁵⁶, C.E. Hyde¹⁷, H. Ibrahim³⁶, A. Italiano²⁸ K. Joo²¹, S.J. Joosten¹¹, N. Kalantarians⁵⁰, G. Kalicy⁵⁶, D. Keller⁵, C. Keppel¹, M. Kerver¹⁷ A. Kim²¹, J. Kim¹¹, P.M. King²³, E. Kinney²⁶, V. Klimenko²¹, H.-S. Ko², M. Kohl³⁹, V. Kozhuharov^{8,54} V. Kubarovsky¹, T. Kutz^{3,4}, L. Lanza^{52,53}, M. Leali^{27,45}, P. Lenisa^{32,33}, N. Livanage⁵, Q. Liu¹², S. Liuti⁵, J. Mammei⁵⁸, S. Mantry⁶, D. Marchand², P. Markowitz⁴⁴, L. Marsicano^{9,10}, V. Mascagna^{27,45}, M. Mazouz16, M. McCaughan1, B. McKinnon37, D. McNulty49, W. Melnitchouk1, Z.-E. Meziani11 M. Mihovilovič⁴³, B. Milner⁴, A. Mkrtchvan⁵⁹, H. Mkrtchvan⁵⁹, A. Movsisvan³², M. Muhoza⁵⁶ C. Muñoz Camacho², J. Murohy²³, P. Nadel-Turoński²⁰, J. Nazeer³⁹, S. Niccolai², G. Niculescu⁴⁰, R. Novotny³⁴, M. Paolone⁴², L. Pappalardo^{32,33}, R. Paremuzyan²⁹, E. Pasyuk¹, T. Patel³⁹, I. Pegg⁵⁶ C. Peng¹¹, D. Perera⁵, M. Poelker¹, K. Price², A.J.R. Puckett²¹, M. Raggi^{8,19}, N. Randazzo²⁸ M.N.H. Rashad¹⁷, M. Rathnavake³⁹, B. Raue⁴⁴, P.E. Reimer¹¹, M. Rinaldi¹⁸, A. Rizzo^{52,53}, J. Roche²³, O. Rondon-Aramavo⁵, G. Salmè⁵¹, E. Santopinto⁹, R. Santos Estrada²¹, B. Sawatzkv¹, A. Schmidt³ P. Schweitzer²¹, S. Scopetta¹⁸, V. Sergeveva², M. Shabestari⁴⁶, A. Shahinvan⁵⁹, Y. Sharabian¹ S. Širca⁴³, E. Smith¹, D. Sokhan⁵⁷, A. Somoy¹, N. Sparveris⁴⁷, M. Spata¹, S. Stepanyan¹, P. Stoler²¹ I. Strakovsky³, R. Suleiman¹, M. Suresh³⁹, H. Szumila-Vance¹, V. Tadevosyan⁵⁹, A.S. Tadepalli¹ M. Tiefenback¹, R. Trotta⁵⁶, M. Ungaro¹, P. Valente¹⁹, L. Venturelli^{27,45}, H. Voskanvan⁵⁹, E. Voutier², B. Woitsekhowski¹, S. Wood¹, J. Xie¹¹, Z. Ye²⁵, M. Yurov⁵, H.-G. Zaunick³⁴, S. Zhamkochvan⁵⁹, J. Zhang⁵, S. Zhang¹, S. Zhao², Z.W. Zhao⁷, X. Zheng⁵, C. Zorn¹

TPE Measurements

- Proton form factor ratio discrepancy
- Positron source at JLab allows for definitive measurements of TPE

- Measurement of e^+p/e^-p cross sections
- SBS can provide key measurements

Full Measurement Plan

SBS is used to detect protons, the corresponding lepton angle is given in parentheses

E _{beam}	2.2 GeV				2.2 (GeV	4.4 GeV		
Spec. Angles (°)	50	70	12 (110)	80	120	6.2 (140)	40	80	15 (70)
$Q^{2}[(GeV/c)^{2}]$	1.9	2.5	3.1	2.7	3.2	3.3	4.3	6.6	6.2
ϵ	0.59	0.37	0.11	0.28	0.08	0.03	0.62	0.19	0.26
Time [day/spec.]	1				2		3		

The following table and figures from E. Cline *et al.* "Direct Two-Photon Exchange Measurement via e^+p/e^-p scattering at low ε in Hall A", https://arxiv.org/pdf/2007.15081.pdf

Projected Statistical Uncertainties

- Measure a small number of data points quickly
- Unpolarized beam, 10 cm long target, 1 μ A current
- Cover a wide range of epsilon
- Existing TPE data $\varepsilon > 0.5$
- Not the only possible TPE measurement...

Using SBS as a Proton Detector

- Don't need to change magnetic fields between measurements
- Final state proton radiative corrections are smaller than for e^\pm
- e⁺ background

Proton Radiative Corrections

Courtesy of Axel Schmidt, using the OLYMPUS generator.

Polarization Transfer Measurements

The following figure and tables from A. J. R. Puckett *et al.*, "Polarization Transfer in $\vec{e}^+ p \rightarrow e^+ \vec{p}$ Scattering Using the Super BigBite Spectrometer", https://arxiv.org/pdf/2007.15081.pdf

Fig. 41. Screenshot from the GEANT4-based Monte Carlo simulation of the SBS-GEP apparatus, illustrating one elastic e^+p event generated within the 40-cm liquid hydrogen target, with the electron detected in the lead-glass calorimeter (located on beam left) and the outgoing polarized proton detected in the SBS on beam right.

SBS and lead glass calorimeter measurement.

Lepton	E_e	$\langle Q^2 \rangle$	θ_e	$\langle \epsilon \rangle$	θ_p	p_p	Event rate	Days	ΔR
	GeV	ĠeV ²	deg.		deg.	GeV	Hz		(absolute)
e^+	4.4	2.6	27.0	0.84	36.2	2.15	16	30	0.021
e^+	4.4	3.4	32.5	0.76	31.1	2.56	7	60	0.023
e^-	4.4	3.4	32.5	0.76	31.1	2.56	1,050	1	0.01

Polarization Transfer Measurements

- Polarized beam, 200 nA beam, 40 cm target
- Measure a few data points to reconfirm existing data at higher precision
- In conjunction with GEp
- Orthogonal to cross section ratio measurements

- Proton Form Factor Ratio still unresolved
- e^+ source at JLab a font of interesting physics
- SBS can be utilized to make definitive TPE measurements