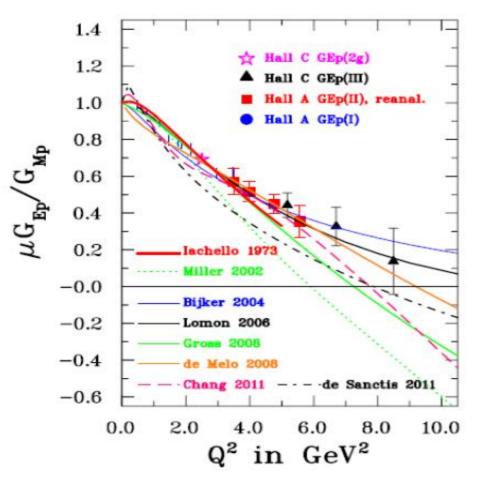
Gep (5) E12-07-109


E. Cisbani

INFN Rome and

Italian National Institute of Health

Proton Form Factors Ratio G_E/G_M

Unbiased measure at the maximum Q² accessible with 11 GeV electrons

Many theoretical models

 Most of them agree with current data but diverge at high Q²

Does G_E ratio pass 0 ?

- Potential relation to diquark structure in nucleon (emerged from recent form factor flavor decomposition)
- Link to non-valence partons contribution

Behaviour at large Q²?

- pQCD-based: G_F/G_M →const, Q^2 →∞

Form Factors are related to GPD

GPD-based: direct connection to quark
 OAM, FF's constraint GPD's

$$\tau = \frac{Q^2}{4M^2}$$

Proton G_E/G_M

Polarization transfer in elastic scattering:

 $H(\vec{e}, e'\vec{p})$

Assumed Conditions:

 $I_{beam} = 75 \text{ uA}$

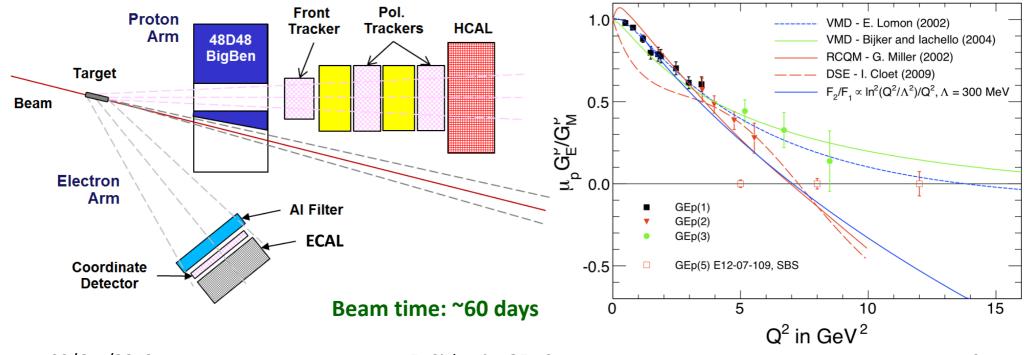
Beam Polarization = 85%

Target Length = 40 cm

Proton Polar. Efficiency = 50%

Acceptance:

 $\Delta\Omega_{\rm e}$ = 130 msr (largest Q²)


 $E_e > 4.0 \text{ GeV}$

 $E_n > 3.5 \text{ GeV}$

$$\frac{G_E}{G_M} = -\frac{P_t}{P_I} \frac{E + E'}{2M} \tan \frac{\theta}{2} \left[1 + (\text{few \%})_{2\gamma} \right]$$

 P_t , P_l : transv. and long. recoil proton polarization

Kinematics and expected accuracy								
E (GeV)	Q² (GeV²)	θ _ε (deg)	P _e (GeV)	Θ_{p} (deg)	P _p (GeV)	Days	ΔμG _E /G _M	
6.6	5.0	25.3	3.94	29.0	3.48	1	0.023	
8.8	8.0	25.9	4.54	22.8	5.12	10	0.032	
11.0	12.0	28.2	4.60	17.4	7.27	30	0.074	

Elastic process selection / π^0 Background Suppression

Proton form factor (GEp)

Reaction: Elastic electron-proton

Trigger: Elastic ep coincidence

Electron singles rate: 200 kHz

Hadron singles rates: 2 Mhz

Coincidence trigger rate: 5 kHz

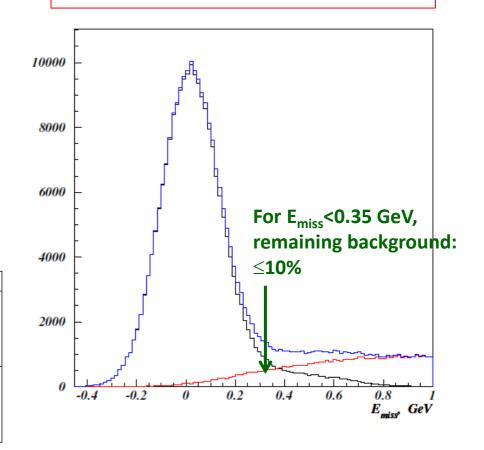
Electron arm:

- Coordinate Detector
- Electron Calorimeter

Hadron arm:

- Super Bigbite Magnet
- Front GEM tracker (FT)
- Analyzer
- 5 Rear GEM tracker (BT)
- Analyzer
- 5 Rear GEM tracker (BT)
- Hadron Calorimeter

GEp Detectors	Channels	Readout	Type
SBS Proton arm			
Front tracker (6 GEM chambers)	41,472	APV25 MPD	VME
Rear tracker (10 GEM chambers)	61,440	APV25 MPD	VME
HCAL	288	FADC 250	VME
Electron arm			
ECAL	1776	ADCs 1881M	Fastbus
ECAL sums	214	TDCs 1877S	Fastbus
CDET	2688	TDCs 1877S	Fastbus

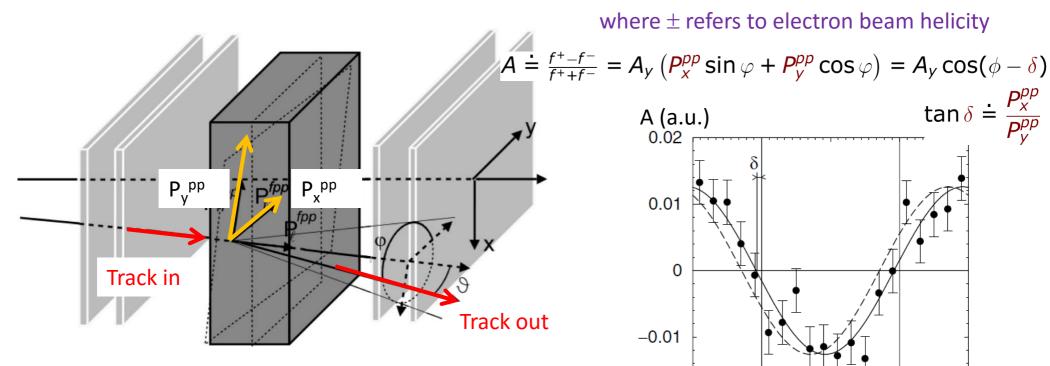

Dominant background expected from π^0 photo-production (as in previous GEP experiments) (eH, $\pi^0\gamma$ p)

Proton arm:

- momentum resolution: 1 %

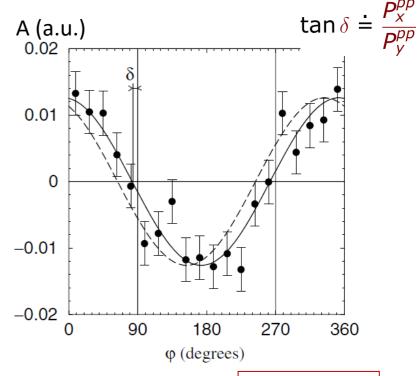
- angular resolution: 1 mrad

- vertex reconstruction: 5 mm


Proton Polarimeter (PP)

Use azimuthal asymmetry of the proton scattering off matter induced by spin-orbit coupling

Number of scattered protons:


$$f^{\pm}(\vartheta,\varphi) = \frac{\epsilon^{pp}(\vartheta,\varphi)}{2\pi} \left[1 \pm A_y \left(P_x^{pp} \sin \varphi + P_y^{pp} \cos \varphi \right) \right]$$

where ± refers to electron beam helicity

Polarimeter only measures components of proton spin that are transverse to the proton's momentum direction

$$\sigma_{P_{x,y}^{pp}} \sim \sqrt{2}/(A \cdot P_e \cdot \sqrt{N}) \implies \boxed{\text{Maximize P}_e}$$

N=number of scattered proton, P_e beam polarization

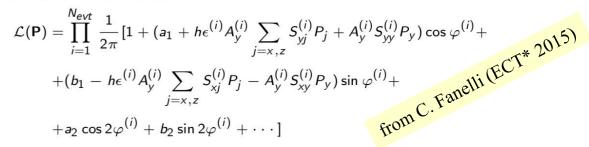
Require: Dipole magnet to precess P₁ at target to P₂, pp

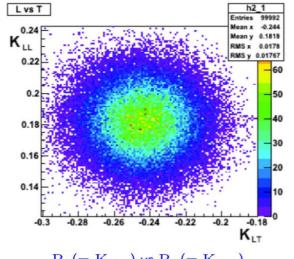
New software tools may improve analysis

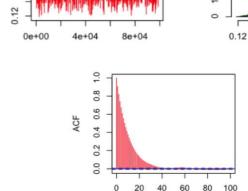
Likelihood function from azimuthal asymmetry, event by event observed quantities

Bayesian MCMC (uniform priors distribution)

Estimate posterior distribution functions of polarization transfer


Pro's


global picture


search max. no approximation

ad hoc priors could improve uncertainties

A Markov chain Monte Carlo has been used to extract the polarization transfers from the Likelihood:

0.16

 $P_{\rm z}(=K_{\rm LL}^{})$ vs $P_{\rm x}(=K_{\rm LT}^{})$

www.iss.infn.it/webg3/pub/tesi/2015-phd-fanelli.pdf

[if (Born Appr. Valid) then Py==0]

Similar approaches in:
N. Sato/ECT* 2016 for PDFs extraction
Super Rosenbluth Separation - J. C. Bernauer 2010

Requirements for Instrumentation in G_E^p/G_M^p

Electron spectrometer requirements in Proton Charge Form Factor Measurement				
Electron-nucleon luminosity	10 ³⁹ Hz/cm ²			
Calorimeter rate*	200 kHz			
Angular acceptance	150 msr			
Momentum range	4-5 GeV			
Energy resolution	10%			
Central angle (range)	25-30 degrees			
Angular resolution	1 mrad			
Time resolution	2 ns			

Proton arm requirements in Proton Charge Form Factor Measurement					
10 ³⁹ Hz/cm ²					
500 kHz/cm²					
1.5 MHz					
40 msr					
3-8 GeV					
1%					
17-30 degrees					
1 mrad					
5 mm					
1 ns					
90 +/- 30 degrees					
0.1 mrad					
analyzer 50 cm x 2					
10 degrees					

^{*} for threshold 0.75 E^{electron} elastic

^{**} for threshold 0.5 E^{proton} elastic