

Wide Angle Compton Scattering

David Hamilton (Glasgow), Gabriel Niculescu (JMU), Bogdan Wojtsekhowski (Jlab) SBS Collaboration Meeting, July, 2016

Outline:

- **Why WACS**?
- # Theory/Existing Data
- **4** Experimental Challenges & Options
- **↓ Quo Vadis?**

$$\vec{\gamma} + \vec{p} \rightarrow \gamma + p$$

WACS $\vec{\gamma} + \vec{p} \rightarrow \gamma + p$

4*Mechanism of the reaction is a key question*

If we can measure the process: What do we learn?
What do we learn from polarization observables?

↓ JLab 6-GeV era WACS experiments (2002, 2008) **↓** Experimental results for polarization K_{LL} $\vec{\gamma} + p \rightarrow \gamma + \vec{p}$ **↓** Motivation for further measurements

An approach for the most productive A_{LL} experiment
... and the avenues it might open.

Two basic options for the mechanism: **Collective response** – several partons *involved in high momentum interaction with incoming/outgoing photons*

4 Individual response – a single quark absorbs the incident photon and the same quark emits a scattered photon

WACS Existing Data/Theory Exp. Details Outlook Theoretical studies of the CS process

Many different groups, many different ideas...

Regge poles - VMD
pQCD - two-gluon
Diquark model
Leading quark
GPDs (handbag)
CQM
SCET
DSE

- since 1960s ..., Laget
- Brodsky, ..., Dixon, MVh,...
- Guichon&Kroll 1996
- Brodsky et al 1972,
- Radyushkin, Kroll et al
- G.Miller 2004
- Kivel&Vanderhaeghen
- Eichmann

Main issues:

NADISON UNIVER

- **4** Competing mechanisms
- **4** Interplay between hard and soft processes
- **4** Threshold for onset of asymptotic regime
- **4** Role of the hadron helicity flip

Compton scattering & GPDs

In the GPD approach, interaction goes with a single quark, and the handbag diagram dominates.

M.Diehl & P.Kroll

$$\frac{d\sigma}{dt} = \frac{d\sigma}{dt} \int_{KN} \left(\frac{1}{2} \left[R_V^2 + \frac{-t}{4m^2} R_T^2 + R_A^2 \right] - \frac{us}{s^2 + u^2} \left[R_V^2 + \frac{-t}{4m^2} R_T^2 - R_A^2 \right] \right)$$
$$K_{LL} = A_{LL} \qquad K_{LL} \frac{d\sigma}{dt} \equiv \frac{1}{2} \left[\frac{d\sigma(+,\uparrow)}{dt} - \frac{d\sigma(-,\uparrow)}{dt} \right]$$

4 Test of the handbag predictions to the <10% level is an important task. **4** The K_{LL} (A_{LI}) asymmetry: observable of choice to test reaction mechanism. **4** NLO corrections are supposed to vary as 1/s (N.Kivel & M.Vanderhaeghen).

M.Diehl & P.Krol

FFs, GPDs and Polarization **Observables**

$$\times \left[-\frac{s-m^2}{u-m^2} + \frac{u-m^2}{s-m^2} - \frac{2m^2t^2(s-u)}{(s-m^2)^2(u-m^2)^2} \right],$$
(9)

$$\frac{d\sigma^{\text{KN}}}{dt}K_{LL}^{\text{KN}} = \frac{2\pi\alpha_{\text{em}}^2}{(s-m^2)^2} \times \left[-\frac{s-m^2}{u-m^2} + \frac{u-m^2}{s-m^2} - \frac{4m^2t^2(m^4-su)}{(s-m^2)^3(u-m^2)^2}\right],$$

FFs, GPDs and PolarizationObservables \mathcal{N} \mathcal{N} <

 $R_{A}(t) = \sum_{a} e_{a}^{2} \int_{-1}^{1} \frac{dx}{x} \operatorname{sign}(\mathbf{x}) \hat{H}^{a}(x,0,t)$ $R_{T}(t) = \sum_{a} e_{a}^{2} \int_{-1}^{1} \frac{dx}{x} E^{a}(x,0,t)$

for m=0 $K_{LL}^{KN} = \frac{s^2 - u^2}{z^2 + u^2}$

$$A_{LL} = K_{LL} = K_{LL}^{KN} \frac{R_A}{R_V} \left[1 - \frac{t^2}{2\left(s^2 + u^2\right)} \left(1 - \frac{R_A^2}{R_V^2}\right) \right]^{-1}$$

experiments with s > 2 GeV², low t Bauer-Spital-Yennie review, RMP 50 (1978)

- **DESY** 1971
- *SLAC* 1971
- CEA 1972-73, Deutsch

The photon flux is 2×10^8 %

FIG. 44. Diagram of the apparatus used by the DESY group for Compton scattering measurements (from Buschhorn *et al.*, 1971a).

Main issues:

- **4** Competing reaction $-p^{\theta}$ photo-production
- **4** Low cross section and small solid angle
- **4** Low efficiency & analyzing power of the proton polarimetry
- **4** Low limit on the polarized target luminosity

electron intensity

E99-114 experiment, Hall A, 2002

. Proton spectrometer

MADISON UNIVER

Electron Beam

Deflecting magnet

Exit beam line

> Photon detector

IAMES MADISON

E07-002 experiment, Hall C, 2008

New measurement at larger (doubled) s, t, u values is necessary to clarify the WACS mechanism. Gabriel Niculescu – SBS Collab. Meeting, July 2016

A

[deal

WACS experimental considerations

 $\succ K_{LL}$

- Beam intensity: $2 \times 10^{13} \gamma/s$
- Polarimeter: figure-of-merit ~ 0.001
- Solid angle of apparatus: HRS/HMS ~ 6-7 msr

 $\succ A_{LL}$

- Beam intensity: 6×10^{11} γ/s (novel source)
- Target polarization: ~0.9
- Solid angle of apparatus: SBS ~ 70 msr

Overall performance ~ 250 better for A_{LL}

Plan to measure A_{LL}

Key parameters: NPS:

Lenergy resolution ~ $2\%/\sqrt{E}$ **Radiation hardness PbWO**₄ **Area/segmentation:** 72 cm x 60 cm /1100 crystals **Coordinate resolution:** 2-3 mm

SBS:

Solid angle: 70 msr for angle above 15°
Momentum acceptance: 2-10, GeV/c
Angular range: from 5° (12 msr) to 45°
Momentum resolution: 0.29 + 0.03*p, %
Angular resolution: 0.14 + 1.3/p, mrad

2.6 m x 2.5 m x 2.5 m structure

1 **m x 0.6 m x 0.5 m** magnet

Incident beam has small transverse size Outgoing photon beam has m/E angular size_

Source could be hermetic!

However, where to send the used electron beam?

Traditional approach is based on using magnets to get e to a beam dump =>
 Large openings => no hermeticity and large distance from the radiator to the target
 Our new approach is using the magnet as a dump => The problem is solved!

Quo Vadis?

- *WACS* mechanism more intricate than previously thought (even in the nominal GPD/SCET range)
- *CPS (10x intensity, 100x yield). Reasonably inexpensive.*
- $4 \quad Allow A_{LL} \text{ measurements } s = 9-15 \text{ GeV}^2 \text{ at } \theta_{cm} \sim 90^\circ, 120^\circ$
- useable for other (polarization) exp.:
- A_{LT} with the same apparatus as A_{LL} (transversely polarized target)~ 20 beam days.
- **Solution** Σ asymmetry with Hall D apparatus, $E \sim 9$ GeV, only for low t (below 1 GeV²) due to flux limitation (10⁷ photons/s)
- Thank you!

