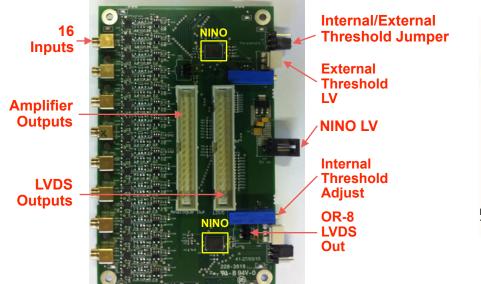
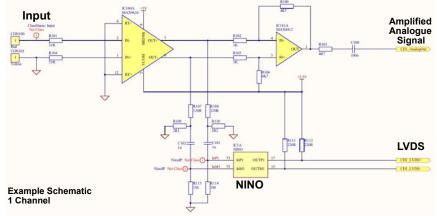


NINO Cards and BigBite Timing Hodoscope Update

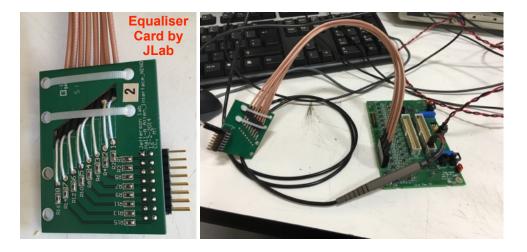
Rachel Montgomery, John Annand SBS Collaboration Meeting, Jefferson Lab, 22/07/16


n


TT 101/1

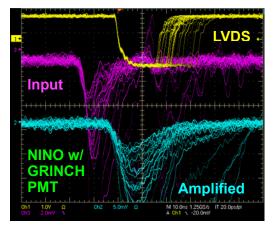
Parameter	Value
Voltage Supply	2.5V
Power	27mW/channel
Peaking Time	1ns
FE Time Jitter	<10ps
Signal Range	30fC - 2pC (1.8e ⁵ - 1.2e ⁷ e-)
Discriminator	10fC - 100fC (0.62 - 1.2e ⁵ e-)
Noise	< 2500 e-
Output	LVDS
Rate capability	>> 10MHz
Input Impedence	~50Ω

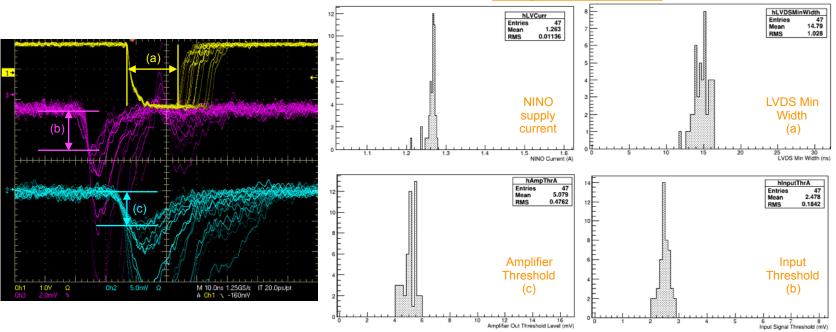
- NINO: ultra-fast, low-power, front-end differential amplifier/ discriminator ASIC (doi:10.1016/j.nima.2004.07024)
- Single photon sensitive, scintillator signals may require attenuation
- Several BB/SBS detectors planning to use NINO based FE cards
- BB: GRINCH; timing hodoscope; SBS: CDet; (RICH; HCal)
- 16-channel amplifier/discriminator cards developed (2 NINOs)
- Outputs: amplified; LVDS (time-over-threshold charge); OR (1/NINO)
- Internal potentiometer or external LV for threshold circuit control



SBS Coordinate Detector

- 6 modules totalling 2352 channels = 147 FE cards (min)
- 2 x 8-pair IDC connectors
- · Gain equaliser card will be connected to input
- Configuration finalised Aug 2015
- Production of 28 cards outsourced to Zot company
- Cards received and tested in Glasgow (Nov 2015)
- 28 cards delivered to JLab to instrument 1st module (June 2016) currently under test
- Await results on 28 cards' performance then start production of remaining 157 cards (185 cards requested)

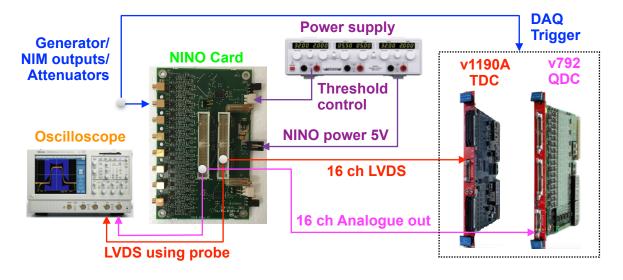




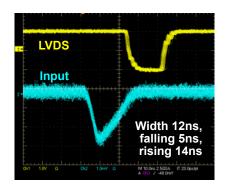
- BB GRINCH (35 cards) and Timing Hodoscope (12 cards)
- MCX co-axial connector types
- Configuration finalised early 2015 order of 50 cards outsourced
- Original production with Zot delayed PCB fault
- 50 corrected cards received June 2015
- Input connector problem sent back for re-seating
- End of Aug 2015 re-seated cards received
- Cards tested 39 fine, 11 still with issues
- Sufficient cards to instrument GRINCH
- Oct 2015, 8 boards + cables sent to JLab for GRINCH prototype
- Remaining 27 GRINCH cards and cables currently in transit/delivery
- Sufficient remaining cards for TH instrumentation + spares, although repairs on most needed
- 1.5m MCX co-ax cables for TH in Glasgow

Examples: 47 RevG cards

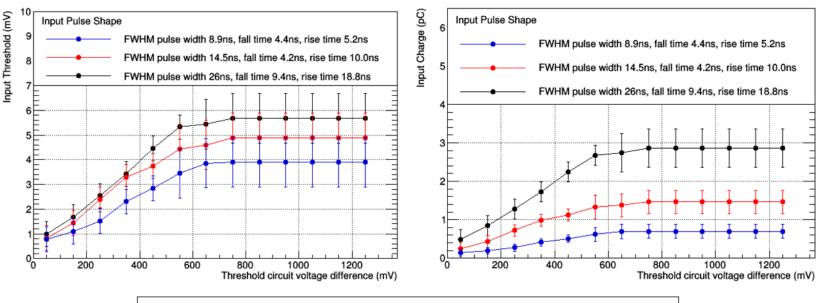
- Cards received from company tested in Glasgow before shipping to JLab
- Input: 3 x 3 x 1 cm plastic scintillator coupled to single channel PMT, with cosmic muons
- Measured with oscilloscope: input; analogue amplified out; LVDS out (via 1GHz probe)
- Test procedure established/repeated for every card with parameters to be noted:
 - current drawn; noise levels; LVDS height/width; threshold level of input and amplified output; low/high thresholds; internal/external threshold control
- All channels of each card checked to be functioning



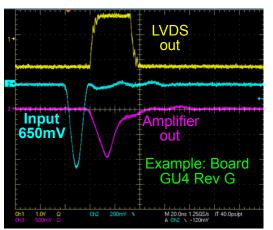
Several studies of NINO cards performed using generated pulses


Set-Up/Equipment:

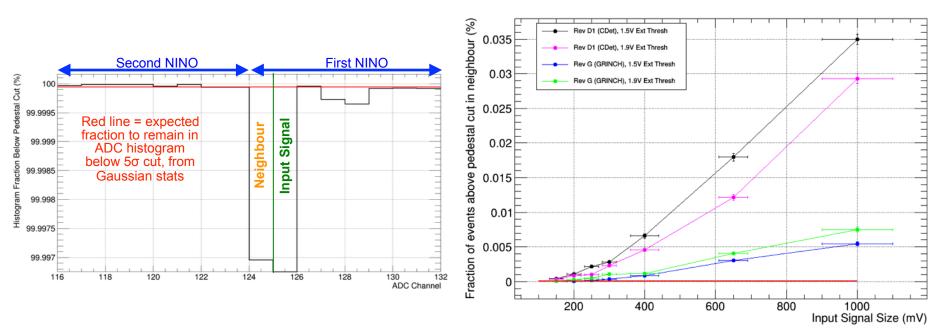
- Tektronix AFG3102 waveform generator
- NIM units (gate generator/coincidence unit etc) alternative input
- Attenuation diodes (some cases)
- NINO Cards
- CAEN v1190A 100ps multi-hit TDC (LVDS outputs)
- CAEN v792 100fC QDC (analogue outputs)
- Signals connected to TDC/QDC by ~6-10m flat ribbon cables
- Tektronix TDS5054B digital oscilloscope
- HAMEG HM7042-5 power supply

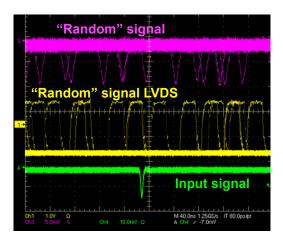


Study of NINO threshold as a function of input pulse height and shape

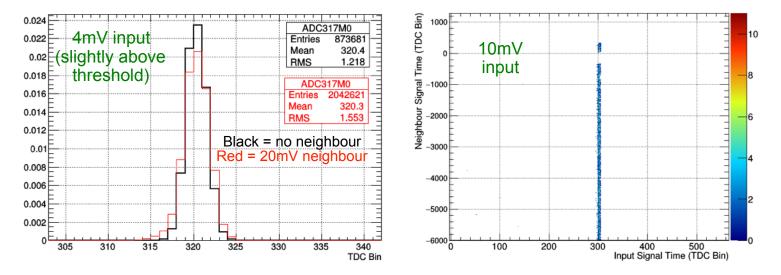

Method:

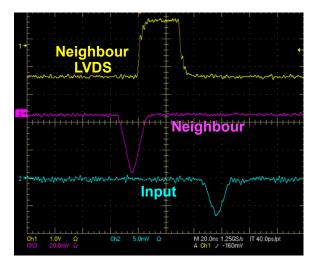
- External threshold circuit control
- · Signal generator as input; oscilloscope to measure signals
- Increase input amplitude until NINO LVDS triggers cleanly on input
- Repeat for several thresholds
- 3 input pulse shapes; signal height spanned 10s p.e. before attenuation
- (n.b. Threshold circuit voltage difference = LV supplied 1.25V)


- Dependence upon pulse shape
- Saturation behaviour expected
- NINO integration time is shorter than duration of input pulses used

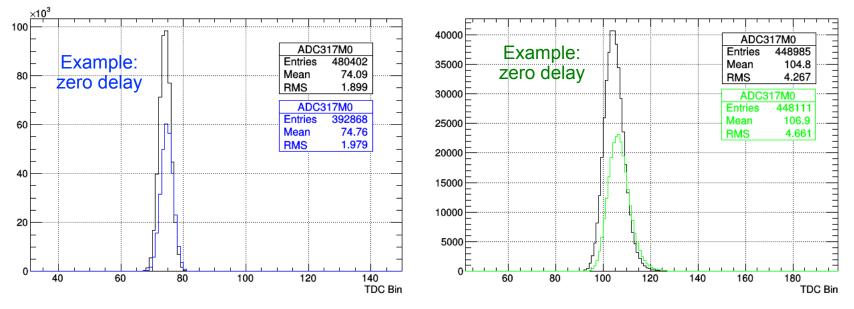

Study for "analogue"/spurious crosstalk hits:

- Input signal from generator on one channel only varied from 150mV to 1V (unreasonably high on purpose)
- External threshold (both 1.5V (lower) and 1.9V (higher))
- TDC spectra checked for digital hits above threshold in neighbours
- No TDC hits observed (apart from 6/~6e6 events for worst case 1.5V thresh, 1V in for CDet board)
- ADC spectra checked for charge sharing/induced hits in neighbours
- Next neighbour always affected the strongest but overall values negligible
- Slightly larger values in Rev D1 compared to Rev G

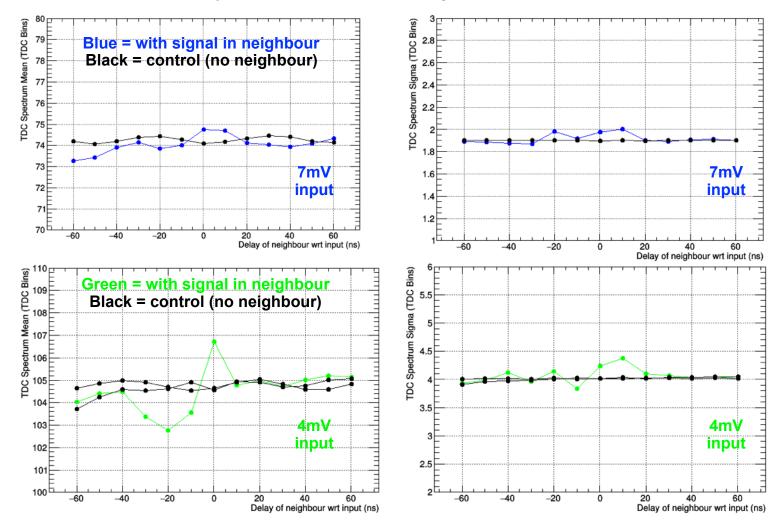



Study for crosstalk influence on digital hits (method1):

- Stable signal in 1 NINO input using NIM units
- Signal varied from just below threshold to ~10mV
- External threshold 1.5V (lower setting)
- Pulse generator for "random" signal in neighbouring channel
- "Random" pulse not correlated by any trigger from stable pulse
- "Random" frequency > stable pulse frequency
- Different frequencies/input sizes (20mV, 100mV, 600mV) tested, but no noticeable difference in effect

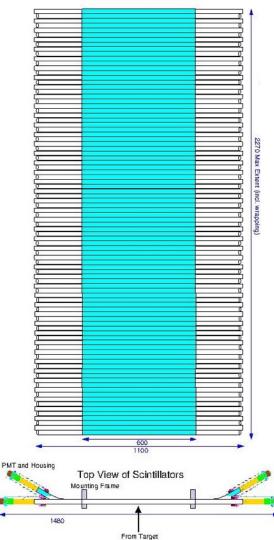

- Neighbour pulse had no significant effect on input signal timing
- With input signal just below threshold (3mV), no digital hits were found with tested "random" neighbour pulses present

Study for crosstalk influence on digital hits (method2):

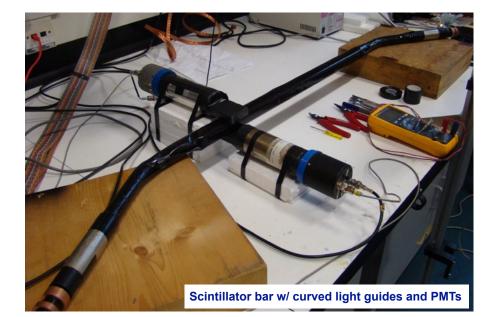

- Pulse generator used for NINO input
- Signals: 4mV just on/above threshold and 7mV slightly above
- Different pulse generator channel for neighbour signal (~40mV)
- Delay between input and neighbouring channel signals varied (neighbour scanned from 60ns before and after true input)
- Input TDC spectrum fitted with Gaussian, parameters studied as a function of neighbour delay
- Control data sets taken with no neighbour signal present to asses
 normal fluctuation levels

• No drastic effect on timing spectra, although decrease in efficiency observed

Study for crosstalk influence on digital hits (method2):

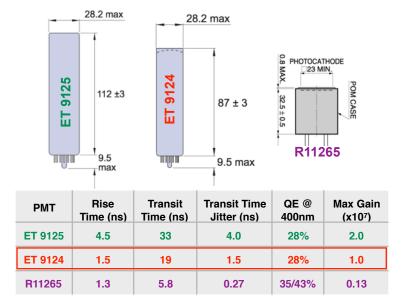

• Also repeated delay scan of 40mV neighbouring channel with true input signal just below threshold at 3mV, but recorded no digital LVDS hits in below threshold channel

BigBite Timing Hodoscope

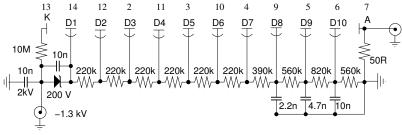

90 off 600 x 25 x 25 Plastic Scintillator J.R.M. Annand 16th August 2012 Dimensions in mm

Front View of Scintillators

- Provide high precision trigger timing information
 - Important for 2-arm (e,e'N) measurements
 - Hodoscope e' hit reference time for nucleon time of flight
 measurements in SBS
- Additionally: pulse height information and high efficiency for MIP over BB momenta range; hit position information may assist tracking
- Positioned between pre-shower and shower calorimeters
- Vertically stacked scintillator bars with readout at each end by single channel PMTs
- <u>Set-up:</u>
 - 90 EJ200 plastic scintillator bars (600 x 25 x 25 mm)
 - Light guide at each end alternate straight and curved light guides to accommodate PMTs + housings in space
 - 180 ET 9142 PMTs (ET Enterprises) and custom bases
 - NINO Rev G FE cards
 - Frame (await final configuration)



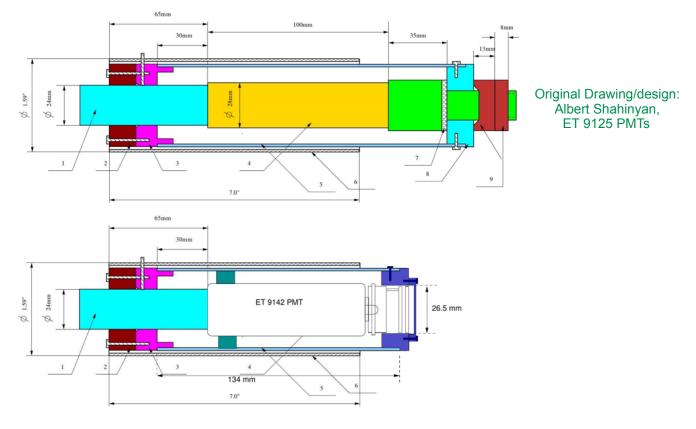
- 90 (+6 extra) EJ200 plastic scintillator bars procured from Eljen technologies
- Light guides glued using UV curable cement
- Plan to wrap bars in tedlar (opaque, thin, doesn't reflect)
- Optical grease will be used for PMT joint
- Assembly of bars/light guide gluing completed in Glasgow and shipped to JLab (before end 2015)



Voltage divider for ET9142SB 28mm PMT, Hall-A JLab.

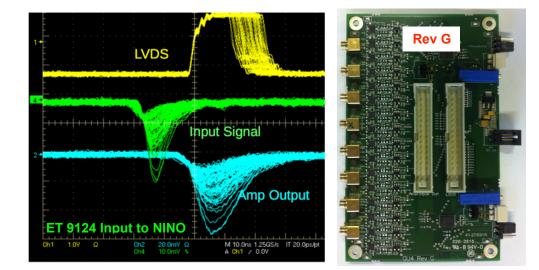
J.R.M.Annand 28/05/2014, modified PS Lumsden 30/03/2016

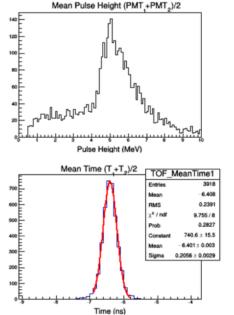
Modified plastic scintillator, -ve HV for higher current operation.

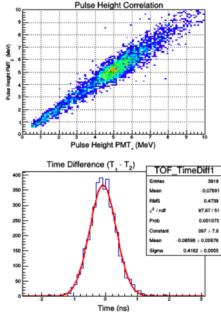

Resistors 0.330W, 150V 200ppm/C Vmax 1.5kV Imax 0.35 mA

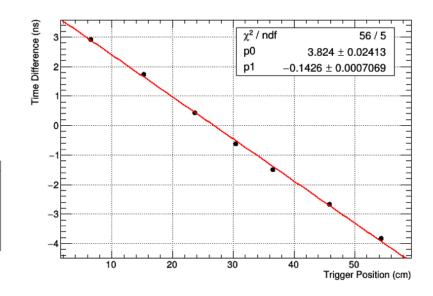
- Cosmic ray tests (J. Annand, 2015): 1 scintillator bar; dual-ended readout; curved light guides; NINO card
- ET 9125 (BaBar DIRC); ET 9124; Hamamatsu R11265
- Time resolutions (from mean time TDC distributions) 0.31ns; 0.15ns; 0.10ns
- ET 9124 optimal trade-off between performance/cost
- 200 ET 9124 PMTs procured, currently in Glasgow

- <u>Custom bases designed:</u>
- Faster signal return to baseline/cheaper than ET option
- Single MCX connector
- BaBar PMT pattern HV connector
- PCB compliant with dimensions BaBar container
- Set for -ve HV
- Low gain (benefit from NINO high sensitivity)
- · High linearity over wide dynamic range
- Production out-sourced to Zot company (Scotland)
- 200 bases currently under construction, completion before end summer 2016


BigBite Timing Hodoscope - PMT Mounts


- Mount for PMTs will require small modification
- Original drawing for ET9125 PMTs (length 112mm)
- ET9124 and ET9125 same diameters, but ET9124 is shorter (length 87mm)
- If already constructed, housing could be machined/shortened
- Light guide, PMT and base diameters constant, no modification in this direction required




BigBite Timing Hodoscope - NINO Cards and Example Data

- NINO Card Rev G
- 12 cards (180 PMTs)
- 15 manufactured and available
- 11/15 currently require study/minor repairs
- Sufficient 1.5m co-axial MCX cables procured and in Glasgow, ready to ship
- Cosmic tests performed with prototype bar and ET 9124 confirm use of NINO card for typical signal sizes and required timing

NINO Front End Cards:

- Currently 2 production-version FE cards based on NINO ASIC
- MCX co-axial inputs (Rev G) or 2 x 8-pair IDC connectors (Rev D1)
- 28 cards produced for CDet and currently under test with 1st module
- If performance satisfactory will manufacture a further 157 cards
- 35 cards have been produced for GRINCH (and sufficient cables procured)
- 8 cards + cables currently at JLab and tests on-going for prototype module
- Remaining cards + cables to instrument entire GRINCH in delivery to JLab
- Characterisation tests show high sensitivity of NINO threshold and minimal crosstalk

BB Timing Hodoscope:

- 96 scintillator/light-guide bars procured, constructed, delivered to JLab
- 200 PMTs procured, currently in Glasgow; bases under construction, expected completion imminent
- 15 Rev G NINO cards produced, enough to instrument TH. 11 currently need repair after issues with input connectors
- Outstanding issues for TH:
 - Final design and construction of frame and time-line/deadline for this
 - PMT mounts require modification
 - 11 NINO cards require repair