SBS Tracking

Ole Hansen

Jefferson Lab

SBS Collaboration Meeting July 22, 2016

SBS Experiments Overview

$\mathsf{GEn}/\mathsf{GMn}$

- Tracking only in electron arm
- GEM trackers in BigBite

GEp(5)

- 125k GEM channels (65k front, 2×30k back)
- High rates: $\approx 150 \text{ kHz/cm}^2$ charged particles
- CDet/ECAL for electron arm position detection (not tracking)
- Elastic scattering: kinematic correlation between elastic e⁻ and recoil p

SIDIS

- Tracking both arms, no kinematic correlation
- GEM trackers in BigBite
- GEM planes in hadron arm, like GEp(5) FT
- $40 \times$ lower luminosity than GEp(5)

Tracking Requirements

Common: straight tracks (field-free region)

- BigBite: GEMs, assisted by ECAL; low rate; BigBite optics
- SIDIS H-arm: GEMs, assisted by HCAL; low rate; 48D48 optics
- **GEp(5)** front: GEMs, restricted to narrow search region; very high rate; requires iterative kinematic correlation analysis; 48D48 optics
- **GEp(5) back:** GEMs, similar search region; high rate; requires bridging between tracker regions

Each item involves (somewhat) different reconstruction algorithm. Significant code sharing possible, <u>if</u> well planned

GEp(5) Kinematic Correlation Analysis

Suggested algorithm (section 9.5.4 of TR2 Response, 13 July 2011):

- Identify ECAL and corresponding CDet hit
- Use elastic kinematics to define *p*-arm search region ($200 \times 5 \text{ mm}^2$, $30 \times 2 \text{ mrad}^2$)
- Find track(s) in *p*-arm search region. Reconstruct vertex(es)
- Identify vertex most consistent with electron hit
- Use vertex position to narrow *p*-arm search region $(30 \times 2 \text{ mm}^2, 7 \times 2 \text{ mrad}^2)$
- Repeat track reconstruction in *p*-arm using new search region

Existing Work

- BigBite track reconstruction based on TreeSearch, for MWDCs (2008)
- GEp(5) tracking feasibility study using TreeSearch for GEMs (2011). Incomplete
- Upgraded TreeSearch library, usable for GEM trackers + calorimeter (or other externally provided search regions) (2014)
- Machine learning approaches (*e.g.* neural network) pattern recognition + Kalman-based track fitter for GEp(5) front trackers (INFN 2015). Work in progress

2011 GEp(5) Tracking Study: Proton Arm GEM Track Reconstruction

- Reconstruction algorithm implemented in 2010/11 based on Hall A BigBite MWDC code
- APV25 decoder & analysis
 - Pulse shape deconvolution
 - Noise rejection
 - Cluster finding
- Pattern recognition: TreeSearch in coordinate projections
 - Very fast recursive template matching algorithm
 - Efficiently finds straight lines of hits (within configurable bin width) → roads
 - Used by HERMES, Qweak, OLYMPUS, ...
- Correlation of roads from different projections via hit amplitude correlation in shared readout planes
- Simple linear minimization fit of correlated hits in 3D

2011 GEp(5) Tracking Study: Results (with Vahe Mamyan, CMU)

Front tracker GEM strip occupancy

Track reconstruction accuracy

- Realistic digitization of GEM & electronics response
- Simplifying assumptions made (see next)
- > 90% tracking efficiency
- 5% ghost track probability
- \approx 40 μ m track position resolution

2011 GEp(5) Tracking Study: Shortcuts Taken

- Very limited simulation (Geant4)
 - Only central front tracker GEM detectors (*i.e.* no HCAL, analyzers, back trackers, CDet, ECAL). No magnet
 - Only small central region illuminated
 - What backgrounds included/missing?
 - Limited statistics
- Simplified reconstruction
 - No target reconstruction
 - No actual kinematic correlation analysis performed
 - Static search window, estimated from MC
- Limited performance characterization
 - "Tracking efficiency" defined via comparison with MC truth data (should be via reconstructed quantities)
 - Ghosts not identified via MC truth data
 - \blacktriangleright Ghost elimination procedure via χ^2 needs verification

Status of TreeSearch Library

- 2013/2014 Improvements (for SoLID)
 - GEM-related algorithms fully implemented
 - Support for "virtual planes" (*e.g.* calorimeter, kinematic r.o.i) to pre-select search regions(s)
 - MC truth data available for reconstructed hits and tracks
 - Support for vertex reconstruction via user-supplied algorithm
- Library in present state should be directly usable for any GEM tracker system plus optional calorimeter, provided the planes and readout coordinates are parallel
- Possible future improvements
 - Better track fitter (*e.g.* Kalman filter). Requires availability of full detector geometry (materials) in tracking code
 - Deterministic annealing algorithm for road clustering (used in OLYMPUS)

Preparing for Software Review

- 4th JLab 12 GeV-era software review scheduled for Nov 10-11, 2016
- SBS specifically targeted for review (as part of Hall A)
- Don't have to show readiness, but present a realistic plan how to get there
- Define requirements, e.g.
 - configurations to be supported, order of experiments
 - performance parameters
 - software components, analysis needs
 - data management, computing requirements/resources

Present plan

- code design, algorithms
- simulations, testing and validation
- alignment and calibration procedures
- manpower
- timeline
- Need to discuss actual practicable solutions. No feasibility studies and proposal-style estimates

Ideally: Create computing document

Possible Milestones

- Near-term (before review)
 - Collect requirements (info mostly exists)
 - Start implementing decoders for new electronics (in progress)
 - First shot at realistic GEp(5) tracking simulation with full input (all essential detectors) & kinematic correlation. Digitization can still be incomplete/approximate.
 - (Realistic BigBite tracking simulation, if needed for upcoming ERR)
 - To-Do list for next 2 years
- By late 2018 (before beam)
 - Improve reconstruction code based on results of simulations
 - Thoroughly test decoders with real hardware
 - Develop other necessary algorithms (calorimeter clustering, RICH PID, GEp(5) polarimetry)
 - Test INFN machine learning codes within simulation framework
 - Develop SIDIS tracking (likely not needed until later)