The Electric Form Factor of the Neutron for SBS

Seamus Riordan Stony Brook University seamus.riordan@stonybrook.edu

July 21, 2016

G_E/G_M at high Q^2 - Spin Observables, Pol. Target

Long. polarized beam/polarized target transverse to \vec{q} in scattering plane

Helicity-dependent asymmetry roughly proportional to G_E/G_M

$$\frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \approx A_\perp = -\frac{2\sqrt{\tau(\tau+1)}\tan(\theta/2)\mathsf{G}_{\mathsf{E}}/\mathsf{G}_{\mathsf{M}}}{\left(\mathsf{G}_{\mathsf{E}}/\mathsf{G}_{\mathsf{M}}\right)^2 + \left(\tau + 2\tau(1+\tau)\tan^2(\theta/2)\right)}$$

Neutron Form Factors

Neutron Form Factors

• Models for G_{P}^{n} are highly divergent for high Q^{2} Seamus Riordan — SBS 2016 G_{P}^{n} 3/12

High $Q^2 G_E^n$ Experimental Layout

- Upgraded Bigbite detector stack for higher rates, better PID
- ullet Hadron calorimeter at 17 ${
 m m}$
- Place magnet $B \cdot dl = 1.7 \text{ T} \cdot \text{m}$ at 2.8 m from target to deflect protons

Stolen from Gordon Cates

- HCAL uses 12×24 15×15 cm² iron/scintillator design for hadron calorimetery
- 48D48 removes background and deflects protons out of QE acceptance - loss of 20% statistics at 2.8 m for extended target

- \bullet Spatial resolution of 1.5 $\mathrm{cm} \to 10 \ \mathrm{mrad}$
- ToF resolution critical for QE selection see later slides
- Detector plane can provide additional PID

- HCAL uses $12{\times}24~15{\times}15~{\rm cm}^2$ iron/scintillator design for hadron calorimetery
- 48D48 removes background and deflects protons out of QE acceptance - loss of 20% statistics at 2.8 m for extended target

- \bullet Spatial resolution of 1.5 $\mathrm{cm} \to 10 \ \mathrm{mrad}$
- ToF resolution critical for QE selection see later slides
- Detector plane can provide additional PID

Quasielastic Selection and Backgrounds

- Cuts on missing momenta (θ_{pq} and ToF), invariant mass allow for suppression of inelastic events
- Inelastics can be corrected using Monte Carlo with MAID or sideband subtraction/deconvolution

 Background mostly neutrons, photons probably removable with energy resolution, some inelastic protons
 Seamus Riordan — SBS 2016 G²/₂ 7/12

MAID vs. DIS - $p_{m,\parallel}$

 $\delta t = 0.5 \text{ ns}$

Black - all, blue - QE, red - Inelastic

Counts vs. Time of Flight Resolution

- \bullet Scaling DIS \times 5, 15% contamination needs about 0.5 $\rm ns$ resolution
- \bullet Could probably do OK with 1 ns resolution, loss of 20% statistics

Nuclear Corrections

- Nuclear effects evaluated by M. Sargsian in Generalized Eikonal Approximation
 - Determine effective neutron/proton polarization
 - Evaluate rescattering effects on asymmetry
- Considers four main diagrams

• PWIA, MEC, FSI, IC

Needs to be redone for new kinematics

- Two photon effects for polarized target related to effects in polarization transfer
- Only considered proton ground state for box diagrams
- Asumming similar size correction as proton:

Blunden, Melnitchouk, Tjon, Phys. Rev. C 72, 034612 (2005)

Seamus Riordan — SBS 2016 G_F^n 11/12

Requirements for Instrumentation in G_E^n/G_M^n Measurement

To achieve $\sim 10\%$ at $Q^2=10~{\rm GeV^2}$ given luminosity $6\times 10^{36} {\rm Hz/cm^2}$ (60 cm target, 60 $\mu {\rm A}$), 60% polarization:

BigBite Requirements		Nucleon Arm Requirements	
$2\ 150 imes 40\ { m cm}^2$ chambers		N acceptance	30 msr
$2~200 imes 50~{ m cm}^2$ chambers		p _n	$1-10~{ m GeV}$
e ⁻ acceptance	$40 \mathrm{msr}$	Angular Range	$17-40^{\circ}$
p _e	$1-3.0~{ m GeV}$	$\delta \theta_{p_n}$	$10 \mathrm{mrad}$
δp_e	1%	$\delta t_{ m ToF}$	$0.5~\mathrm{ns}$
Angular Range	$35-40^{\circ}$	B · dl	$1.7 T \cdot m$
e^- detector rates	100 kHz/cm^2	Total rate	$20 \mathrm{~kHz}$
e− ToF	0.25 ns		
δE	$\sim 10\%$		
π rejection	100-300:1		
$\delta \theta_{e}$	$\sim 1 \mathrm{\ mrad}$		
δv_z	$\sim 0.5~{ m cm}$		

- G_E^n can be measured to $Q^2 = 10~{
 m GeV}^2$ with SBS to $\sim 10-20\%$ accuracy
- $\bullet\,$ HCAL needs ToF resolution on order of $0.5-1~\mathrm{ns}$
- $\bullet\,$ Upgraded target that can handle 60 μA with 60% polarization required
- Other requirements fall within SBS defintions

BACKUP SLIDES

Polarized Target Measurements - Nulling asymmetry

Long. polarized beam/polarized transverse to \vec{q} in scattering plane

$$\begin{aligned} \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} &= A_\perp \sin \theta^* \cos \phi^* + A_\parallel \cos \theta^* \\ &= -\frac{2\sqrt{\tau(\tau+1)} \tan(\theta/2) G_E/G_M \sin \theta^* \cos \phi^*}{(G_E/G_M)^2 + (\tau + 2\tau(1+\tau) \tan^2(\theta/2))} \\ &- \frac{2\tau \sqrt{1 + \tau + (1+\tau)^2 \tan^2(\theta/2)} \tan(\theta/2) \cos \theta^*}{(G_E/G_M)^2 + (\tau + 2\tau(1+\tau) \tan^2(\theta/2))} \end{aligned}$$

- A_{\parallel} provides "reference asymmetry" that is mostly dependent just on kinematic variables
- Setting A_{||} and A_⊥ to cancel by rotating target pol. angle reduces uncertainties contributed by scaling effects in asymmetry such as target and beam polarization
- Need to know G_E^n a priori to do it correctly, only for low Q^2

Assuming Galster for G_E^n , Kelly for G_M^n :

Q^2 [GeV ²]	time [days]	stat [%]	sys [%]
1.5	1	1.3	2.4
3.7	2	6.0	4.4
6.8	4	19.8	7.3
10.2	31	22.5	6.6

Systematic uncertainties to asymmetries at highest Q^2

Quantity	Expected Value	Rel. Uncertainty
Beam polarization P_e	0.85	2.4%
Target polarization $P_{^{3}\mathrm{He}}$	0.60	3.3%
Neutron polarization P_n	0.86	2.3%
Nitrogen dilution $D_{ m N_2}$	0.94	2.1%
Background dilution $D_{ m back}$	0.95	< 1%
Final state interactions	0.95	2.1%
Inelastic correction	0.8-1.2	5.0%
Angular error from A_{\parallel}		< 1%
Systematic error in G_E^n/G_M^n		6.6%

DIS - W^2

 Adjusting cuts so contamination is about the same, loss of statisics is about 20%

DIS - W^2

 Adjusting cuts so contamination is about the same, loss of statisics is about 50%

- Rates above include elastic e^- , DIS e^- , and π^{+-0}
- $\bullet\,$ Single arm shower/preshower (with ps cut) keeps will have $<2~{\rm kHz}$ trigger rate without affecting QE cuts
- Need to allow some inelastic in trigger prescale lower threshold

- Rates above include elastic e^- , DIS e^- , and π^{+-0}
- $\bullet\,$ Single arm shower/preshower (with ps cut) keeps will have $<2~{\rm kHz}$ trigger rate without affecting QE cuts
- Need to allow some inelastic in trigger prescale lower threshold

Smearing and Photons

- Smearing ToF is asymmetric in p
- For highest momentum transfers $\beta = 1$ particles can get smeared in (from small $p_{m,\parallel}$)
- 48D48 and energy resolution of HCAL should suppress
- π^0 production could contribute need to study responses, rates