Modeling the kinematics of e(d,p'p'X)e'

P.King Ohio University

Process used in the model

- Generate a real proton, virtual neutron pair from an at-rest deuteron
- Generate a real proton, virtual pion pair from the neutron with the proton carrying momentum fraction, *z*, and transverse momentum, p_T
- Calculate the en \rightarrow e'p'X cross-section using $\frac{d\sigma(en \rightarrow e'p'X)}{dx_{Bj}dQ^2dzdp_T^2} = f_{p\pi/n}(z, p_T^2)\sigma_{\pi}(x_{Bj}/(1-z), Q^2)$
- Unfortunately, $f_{p\pi/n}$ has non-physical values in the recent model calculations, so I won't show any rates today

Process of the model

- Deuteron starts at rest
- Spectator proton, p₁,
 thrown using deuteron nucleon momentum distribution, and flat in cos(θ) and φ
- Electron kinematics (E' and θ_e) are generated flat in Q² and x_{Bj}, only keep θ_e in the range (5°,15°); φ_e is flat in the range (-12°,12°)
- Fragmentation in the neutron rest frame is thrown flat in *p*_T and *z*

Plans and questions

- Recheck the fragmentation and pion cross section functions in the model
- Determine reasonable ranges for the acceptance of both protons (currently we see the most rate for p2 going forward, with p1 going backward)

- What are the limits of detectable proton momenta?
- What will be the effect of interactions between the two protons?