

Determining the CEBAF Beam Energy

by

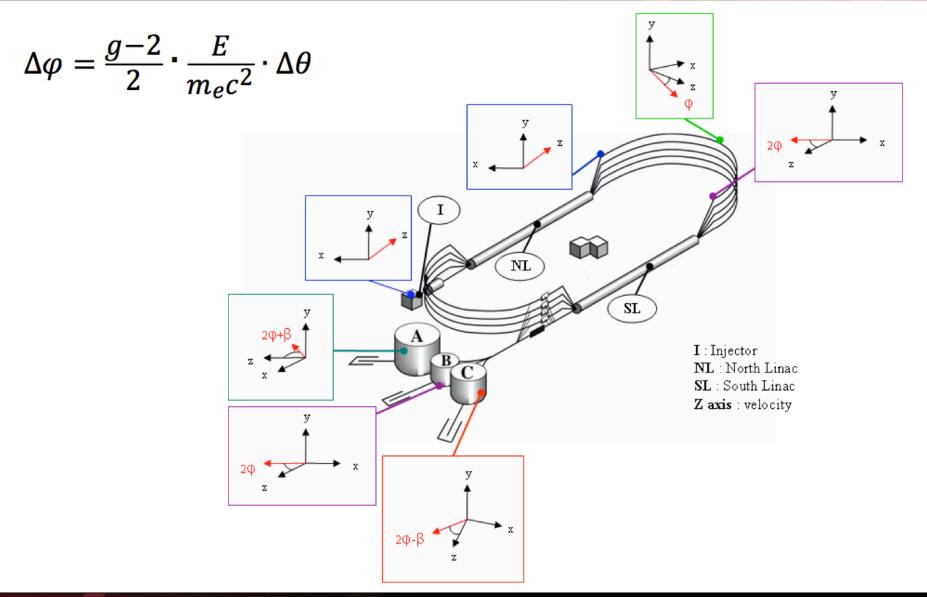
Douglas Higinbotham (Jefferson Lab) and Gina Mayonado (DOE SULI Student)

Beam Energy for 6 GeV CEBAF

ARC Energy Method

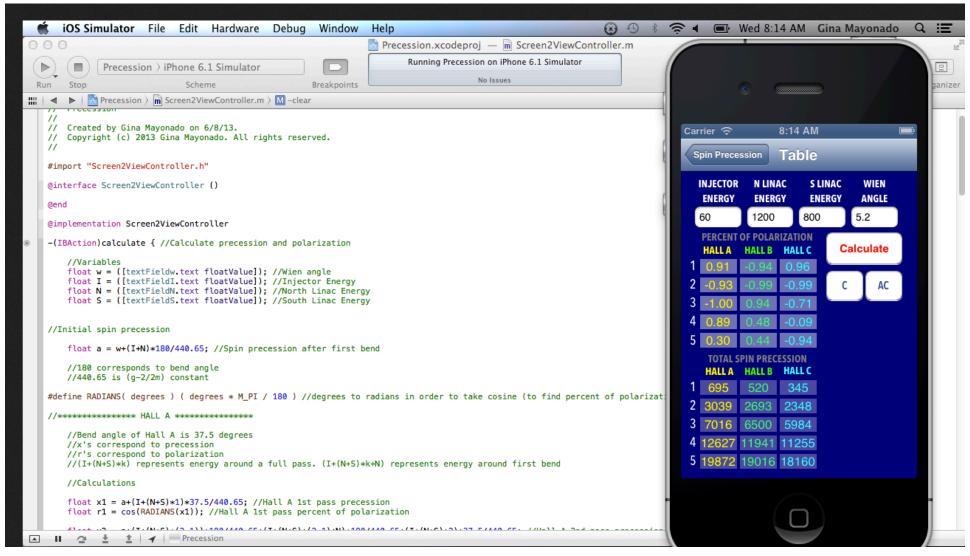
- Use dipole nine magnets connected in series
 - Eight magnets bend the beam into the hall
 - Ninth magnets can be mapped with NMR
- Measure angle of beam at start and end of bend
- Use dispersive optics for best precision (~2E-4 dE/E)

Elastic Scattering


- Dedicated elastic setup, eP, measure electron proton scattering angles (~2E-4 dE/E)
- Use spectrometers to measures angles and/or momentum

Spin Precession

 Using the polarized source and the many Jefferson Lab polarimeters to determine the energy (also ~2E-4 dE/E)



Spin Precession At CEBAF

New Spin Calculator App

Thanks to Department of Energy SULI Student Gina Mayonado

Beam Energy From Total Precession

J. M. Grames et al., Phys. Rev. ST Accel. Beams 7 (2004) 042802.

Polarimeters	Ψ (deg)	E (MeV)
Mott-Compton	10985.94 ± 1.37	5649.21 ± 0.89
Mott-Møller A	10984.96 ± 0.71	5648.70 ± 0.65
Mott-Møller B	10501.60 ± 0.64	5647.20 ± 0.66
Mott-Møller C	10024.51 ± 0.69	5649.03 ± 0.71

NOTE: The Hall A and C polarimeters receive more attention to systematics then the Hall B polarimeter due to the requirements of the experiments (e.g. G0, HAPPEX, Qweak, etc.).

Even so, full spread these results is only 2 MeV (5648 +/- 1 MeV) so already 2E-4 level.

Using Spin At 12 GeV

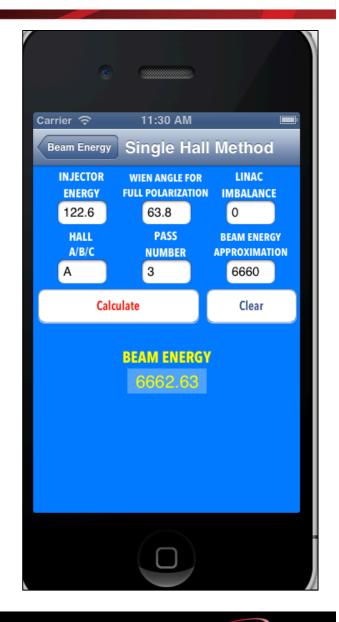
- At 11 GeV, the beam processes >20k degrees before arriving in Hall A.
- 2 MeV of beam energy change (balanced) is a 5 degree change in the precession.
- Phase can be determined to the degree level with Compton (~8 hrs)
- That would be 9E-5 !! dE/E with just a single hall
- BUT accelerator systematics have to be under control
 - Injector Energy
 - Linac Balance (relative difference in energy)
 - Calibration of Wien angle

Beam Energy – Single Hall

- Known parameters needed:
 - Injector energy
 - Linac imbalance
 - Wien angle that gives full polarization
- Outputs multiple solutions

Energy Output

3489.95


4547.51

5605.07

6662.63

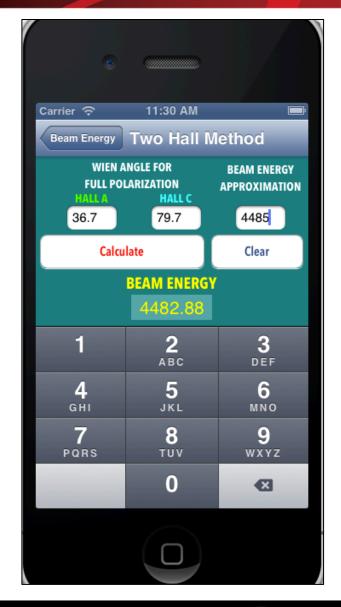
7720.19

8777.75

Energy By Precession Differences

J. M. Grames et al., Phys. Rev. ST Accel. Beams 7 (2004) 042802.

Polarimeters	$\Delta\Psi$ (deg)	$\Delta\Theta$ (deg)	E (MeV)	$\frac{\sigma_E}{E}$ (%)
Møller A-Møller B	483.36 ± 0.84	37.4913 ± 0.0102	5681.10 ± 10.03	0.176
Møller A-Møller C	960.45 ± 0.88	74.9687 ± 0.0060	5645.30 ± 5.17	0.092
Compton A-Møller B	484.34 ± 1.44	37.4913 ± 0.0102	5692.62 ± 17.03	0.299
Compton A-Møller C	961.43 ± 1.46	74.9687 ± 0.0060	5651.07 ± 8.61	0.152
Møller B-Møller C	477.09 ± 0.83	37.4774 ± 0.0115	5609.49 ± 9.89	0.176


Hall A and C give smallest errors since the opening angle between them is twice as large as A and B or B and C.

Repeating this same measurement at 11 GeV has a factor of two better sensitivity; so can be provide a ~5E-4 level absolute measurement with almost no systematic error.

Beam Energy – Two Hall

- Known parameters needed:
 - Wien angles for full polarization in both Halls
- Less systematic errors
 - No accelerator setting dependence.
 - Only uses spin precession from beam switchyard into the halls.

Synchrotron Radiation

 Radiation from charged particles accelerated in a curved path

$$\delta E(in MeV) = 0.0885 \times \frac{[E(in GeV)]^4}{R(in m)}$$

Beam Energy (MeV) Energy Loss (MeV) Change in Spin Precession (deg)

2302.632	0.01	-0.01
4482.686	0.29	-0.04
6662.604	1.88	-0.16
8842.629	7.32	-0.48
11022.643	21.32	-1.16

At 11 GeV this is a 2E-3 correction that we need to control to the 10% level.

Working on adding this correction into the spin calculator code.

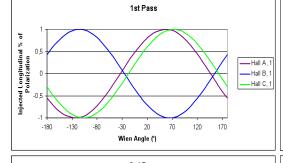
Beam Energy from Integral Field and Angle

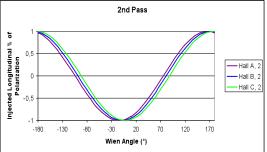
Deviations from the average for the eight down in the ARC

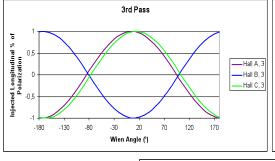
Avg (5-12)	1,607,58	31 2	2,355,398	2,796,953	[G-cm]
BA1C05	0.02%	0.00%	% -0.03%		
BA1C06	0.00%	-0.019	% 0.03%		
BA1C07	-0.02%	0.029	% 0.04%		
BA1C08	-0.01%	0.049	% 0.03%		
-					
BA1C09	0.00%	-0.049	% -0.04%)	
BA1C10	0.00%	0.009	√o -0.01%		
BA1C11	0.03%	0.01%	6 -0.02%		
BA1C12	-0.01%	-0.019	% -0.01%)	
BA1C11	0.02%	-0.019	% -0.03%	(a repeat n	neasurement)

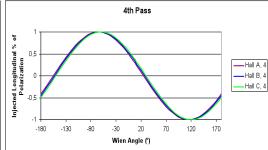
NOTE: The 9th dipole is systematically different then the other eight at the 1E-3 level. Need to figure out if that was always true.

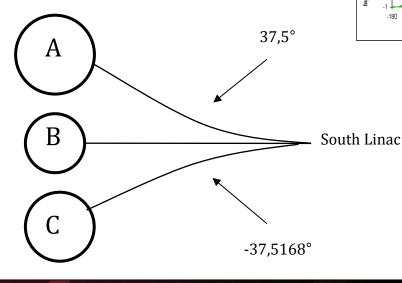
Current Man Power


- Luke Myers (review/analysis of Bdl data)
- Seare Farhat (continuing spin dance coding)
 - will shift to Bdl codes in coming months
- David Gaskel (long term for two hall spin dance)
- Vernin Pascal (consulting/original designer)
- Rick Gonzales (technical help)
 - Was able to get the mapper to run during g2p
 - Requested new multiplexer and telsameter which have arrived but not yet installed




Magic CEBAF Energy (2.12 GeV/pass)


At 2.12 GeV per pass, the passes give full polarization the all three of the current halls.


1 st	2.12 GeV
2 nd	4.23 GeV
3 rd	6.35 GeV
4 th	8.46 GeV
5 th	10.6 GeV

