$G_{M}^{\ p}$ Simulation and analysis plan

E. Christy (Hampton University), John Arrington (ANL)

- → Analysis framework based on procedures well tested for precision Cross section measurements, eg.
 - M.E. Christy, et al., Phys. Rev. C 70, 015206 (2004).
 - A Qattan, et al., Phys. Rev. Lett. 94, 142301 (2005).
- \rightarrow Simulation software also already exists, with multiple tools available

Ideally have at least 2 (mostly) independent analyses utilizing:

- 1. complementary procedures
- 2. independent software when feasible

Cross Section Extraction Methods

For each bin in $\Delta E'$, $\Delta \Omega$, the number of detected electrons is:

 $N^{-} = L^{*}(d\sigma/d\Omega dE')^{*}(\Delta E' \Delta \Omega)^{*} \varepsilon^{*} A(E', \theta) + BG$

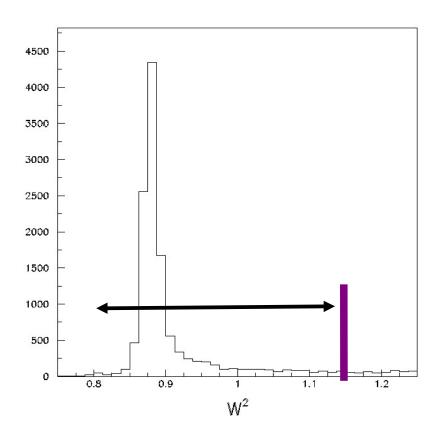
with L: Integrated Luminosity (# of beam electrons*targets/area)
ε: Total efficiency for detection
A(E',θ): Acceptance for bin
BG: Background events.

The efficiency and backgroun corrected electron yield is

$$Y = (N^{-} - BG)/\epsilon = L * \sigma^{data} * (\Delta E \Delta \Omega) * A(E', \theta)$$

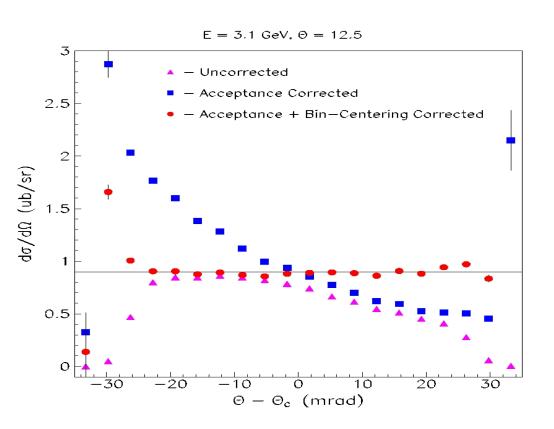
For $A(E',\theta)$ accurately modeled by simulation, determine cross section from

1. $\sigma^{\text{data}} = Y/[(\Delta E \Delta \Omega) * A(E', \theta) * L]$ (acceptance correction method) M.E. Christy, et al., Phys. Rev. C 70, 015206 (2004).

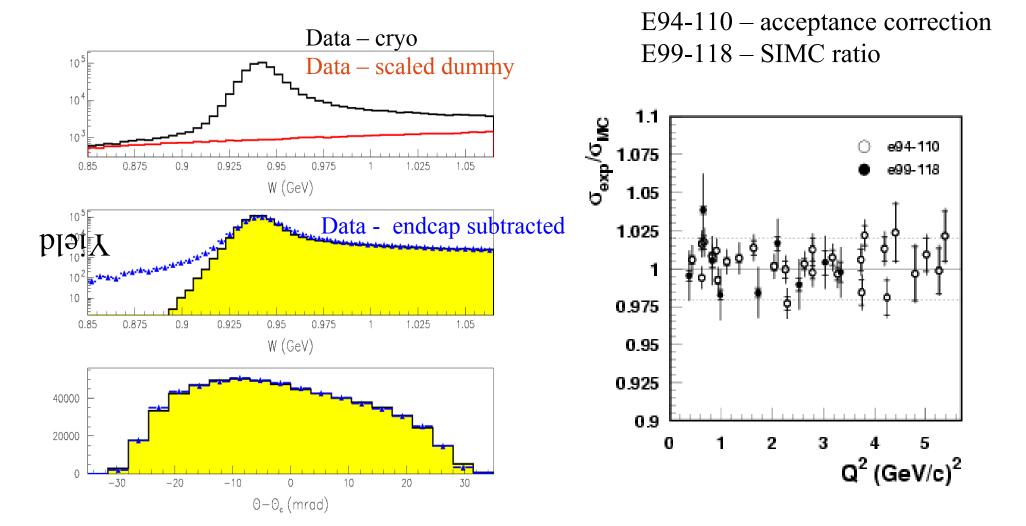

or

2. $\sigma^{\text{data}} = \sigma^{\text{mod}} * [Y(E',\theta)/Y_{MC}(E',\theta)]$ (MC ratio method)

To get Born cross section:


radiatively correct data
 radiated model

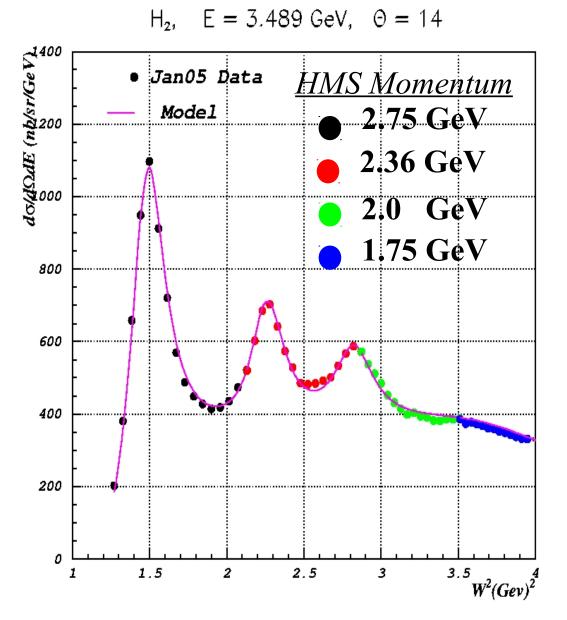
Acceptance correction method (single arm MC uniform generation)



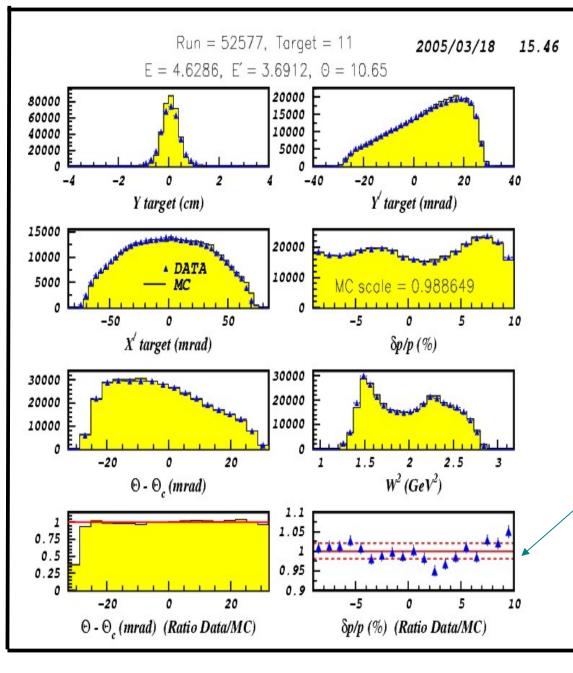
- Use Model to remove θ dependence.
- Do Weighted average over θ .

- Apply background subtractions and acceptance corrections in each $E'-\theta$ bin.
- Integrate radiative tail in each θ bin.
- Apply radiative corrections (code from SLAC NE11, modified for current target).

MC ratio method: SIMC



- \rightarrow Methods are complementary and each has advantages and disadvantages
- \rightarrow Both rely on reliable model of spectrometer optics and acceptance
- \rightarrow Different radiative correction codes for each method
 - => Provide robust cross check of results


Backup

Acceptance Correction Method

- (1) Bin efficiency corrected e- yield in $\delta p/p - \theta$. ($\delta p/p = +/- 8\%$, Dq = +/- 35 mrad)
- (2) Subtract scaled dummy yield bin-by-bin to remove e- Al background.
- (3) Subtract charge symmetric e- yield bin-by-bin.
- (4) Apply acceptance correction for each $\delta \theta$ bin.
- (5) Apply radiative corrections bin-by-bin.
- (6) Apply θ bin-centering correction and average over $\theta \implies$ for each δ bin.

Monte Carlo Ratio Method

Comparison of January '05 proton data to MC using E94-110 resonance region model and externally calculated radiative corrections.

(1) Generate MC events with σ model weighting and radiative contributions included.

(2) Scale the MC yield by L_{data}/L_{MC} , where L_{MC} is that needed to produce N_{gen} for the given σ_{mod} and phase space generated into.

(3) Add background contributions to MC or subtract from data.

(4) $d\sigma(\delta, \theta_c) = d\sigma^{mod}(\delta, \theta_c) *$ $Y(\delta)/Y_{MC}(\delta)$ Where $Y(\delta)$ is the yield for events with any value of θ , i.e. this integrates over θ .

Warning: For inclusive data, radiative events can come from kinematically far away.

For comparison of SIMC and MCEEP radiative effects see

http://hallaweb.jlab.org/data_reduc/AnaWork2010/mkj_simc_mceep_radcor.pdf