Proton Magnetic Form Factor from Existing Elastic e-p Cross Section Data

Longwu Ou, Barak Schmookler Massachusetts Institute of Technology

2015 APS April Meeting April 12, 2015

Nucleon Electromagnetic Form Factors

- Fundamental quantities defined in the context of onephoton exchange
 - Characterization of spatial distributions of charge and magnetization in the nucleon
 - Rigorous test of nucleon models
 - Input to nuclear structure and parity violation experiments
 - New information on basic hadron structure as first moments of GPD

Measurement of Proton Form Factor

Rosenbluth separation:

In one-photon exchange approximation, the e-p elastic scattering cross section can be expressed in terms of two form factors:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \frac{\epsilon \left(G_{E}^{p}\right)^{2} + \tau \left(G_{M}^{p}\right)^{2}}{\epsilon \left(1 + \tau\right)}$$
$$\sigma_{R} \equiv \epsilon \left(1 + \tau\right) \frac{d\sigma}{d\Omega} / \left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \epsilon \left(G_{E}^{p}\right)^{2} + \tau \left(G_{M}^{p}\right)^{2}$$

$$\tau = Q^2 / 4 M_p^2 \qquad \epsilon = [1 + 2(1 + \tau) \tan^2(\theta / 2)]^{-1}$$

- Measure angular dependence of *ep* elastic cross section at fixed Q²
- Extract electric and magnetic form factor from linear dependence of reduced cross section on ε

Measurement of Proton Form Factor

Polarization transfer:

The ratio of elastic to magnetic form factors are determined by transverse (P_t) and longitudinal (P_l) polarization components of the recoil proton

$$\frac{G_E^p}{G_M^p} = -\frac{P_t}{P_l} \frac{(E+E')}{2M_p} \tan\left(\frac{\theta}{2}\right)$$

Pros:

1 Not suffer from dramatically reduced sensitivity to G_E at large Q^2

2 Relatively small two-photon exchange correction

Cons:

Only measure ratio, need cross section measurement to derive G_{E} and G_{M}

Longitudinally polarized electrons scatters elastically from unpolarized proton target

Discrepancy Between Two Methods

- Two methods yield significantly different results in form factor ratio in the region $Q^2 \ge 1.0 (GeV/c)^2$
 - Rosenbluth separation results show approximate scaling behavior of G_E and G_M with large uncertainties at high Q² values:

$$G_E^p \approx G_M^p / \mu_p \approx G_D = (1 + Q^2 / 0.71 \, GeV^2)^{-2}$$

Recoil polarization method see the ratio decreases with increasing Q² and is well parametrized as:

$$\frac{\mu_p G_E^p}{G_M^p} = \mu_p R = 1 - 0.13 (Q^2 - 0.04)$$

 Possible explanation: Two-photon exchange (TPE) effects

Exchange of Two Hard Photons

TPE effects affect the ratio of form factors obtained from Rosenbulth separation method and polarization transfer technique in different ways (*Guichon & Vanderhaeghen, Phys. Rev. Lett. 91 (2003) 142303*)

Cross Section with TPE Correction

No non-linearity has been observed so far in the ε -dependence of the cross section Theoretical calculations show that TPE contribution to the cross section Should be zero at ε=1 (JHEP04(2013)029)

TPE correction

Our phenomenological model to include TPE effect:

$$\sigma_R = \tau \left[\left(G_M^p \right)^2 + \frac{\epsilon}{\tau} \left(G_E^p \right)^2 + \left(G_M^p \right)^2 a(Q^2) (1 - \epsilon) \right]$$

$$\sigma_R = \tau (G_M^p)^2 [1 + \frac{\epsilon}{\tau} R^2 + a(Q^2)(1 - \epsilon)] \rightarrow R = G_E^p / G_M^p$$

$$\sigma_{fit} = \sigma_{Mott} \frac{\tau}{\epsilon (1+\tau)} (G_M^p)^2 [1 + \frac{\epsilon}{\tau} R^2 + a(Q^2)(1-\epsilon)]$$

Parametrization for G_M and a(Q²):
$$\frac{G_M^p(Q^2)}{\mu_p} = \frac{1+b_0\tau}{1+b_1\tau+b_2\tau^2+b_3\tau^3} \qquad \tau = \frac{Q^2}{4M_p^2}$$
$$a(Q^2) = p_0 + p_1Q^2 + p_2Q^4 + p_3Q^6$$

Model for the Ratio G_E/G_M

$$\sigma_{fit} = \sigma_{Mott} \frac{\tau}{\epsilon (1+\tau)} (G_M^p)^2 [1 + \frac{\epsilon}{\tau} R^2 + a(Q^2)(1-\epsilon)]$$

- Ratio of electric to magnetic form factors are well measured by polarization transfer experiments at Q² below 8 GeV²
- A model describing the evolution of R is needed to extend the analysis to high Q² region
 - Linear fit of R below 7.7 GeV² and assume R=0 above that
 - Lomon's VMD fit (*Phys. Rev.* C 66, 045501 (2002))

Fitting Procedure

Parameters to be fit:

- Parameters describing the form factor G_M
- Parameters characterizing the TPE corrections
- Normalization factor η for each dataset

These parameters are determined by minimizing the following $\chi^{\scriptscriptstyle 2}$:

$$\chi^{2} = \sum_{j=1}^{N_{expt}} \sum_{i=1}^{N_{data point}} \left[\frac{\left(\sigma_{i} - \sigma_{fit} / \eta_{j}\right)^{2}}{\left(d \sigma_{i}\right)^{2}} + \frac{\left(\eta_{j} - 1\right)^{2}}{\left(d \eta_{j}\right)^{2}} \right]$$

Ratio R of electric to magnetic FFs are taken from experimental data and theoretical models

Fitting Results

G_{M} from global fit

 $a(Q^2)$ from global fit

Summary and Future Plans

Summary:

- A phenomenological model based on recent theoretical investigation is built to describe TPE correction
- The parameters in the model are fit to *ep* elastic cross section data

Future plans:

- Global analysis of cross section with other models describing the ratio of form factors
- Analysis of proton form factor in time-like region