Two Body Scattering and Mandelstam Variables

1(k1)

2(p1) — 3(k2)

4(p2)

to be expressed in terms of Lorentz scalers

3 4
e Equivalence principle requires observable \ /

= 10 Lorentz scalers can be constructed out

of 4 Lorentz vectors

e Constraints: Four-momentum conservation / \
and all 4 particles are on-shell 1 5

2 2
Two independent kinematic variables for 5 = (k1 4+ p1)” = (k2 + p2)
unpolarized two-body scattering process  ; _ ( ky — k2)2 _ (pz B p1)2

Mandelstam variables are convenient choices 2 2
u= (ki —p2)” = (p1 — k2)
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Two Body Scattering and Mandelstam Variables

1(k1) 4+ 2(P1) — 3(k2) + 4(P2)

3 4
Conservation of four-momentum leads to 3
independent vectors: \ /
K:k1+/€2 P:pl—l—Pz \

q=ki—ka=p2—p / \
1 2

Some relation between these three vectors and
Mandelstam variables:
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Elastic Scattering of Two Dirac Particles

1(k) +2(p) — 1(K") +2(p")

1 2
Scattering amplitude can be expressed as: \ /
M = a(k")Tyu(k) - a(p’)2u(p)
= ' and I') are 4x4 matrices, and can be / \
expressed in terms of Dirac y-matrices: 1
2

,l: 174
1 P M ow =5

= Dirac spinors satisfy the Dirac equation:

u(Y'pp—m)=0  (¥pp—m)u=0



Construction of Scattering Amplitude

First we consider vector current:
a(kTl u(k) = a(k') [y A1 + io” gy Az + A3q” + 0P KyAg + A5 KP] u(k)

Al, ..., A5 are functions of the two Mandelstam variables s-u and t

 This is the most general construction of the vector current in terms of Dirac
spinors, Dirac y-matrices and the four-vectors of incident and outgoing
particles

e The five terms in square brackets are not independent
It can be proved from the Dirac equation:
?

u(k" ) KPu(k) = u(k’) [§ap>‘q>\ — mm/p] u(k)

(k)P K yulk) = %a(k’)qpu(k)

Thus, the general form of a vector current of particle 1 can be expressed as:

u(K)Tyu(k) = a(k') [y G1 + G2 K” + G3q”] u(k)




Construction of Scattering Amplitude

General form for vector current of particle 1:

a(k D0y u(k) = (k') [17G1 + GoKP + Gag?) u(k)

Similarly, the axial vector current can be express as:
u(k"T] yu(k) = a(k') [v*v°Hy + Ho KPv° + H3qy°] u(k)

And for particle 2, we have

u(p" )by ulp) = a(p’) [YP g1 + g2 PP + 93¢°] u(p)
u(p" T8 yulp) = a(p’) [v*7°h1 + ha PPY° + h3q”y°] u(p)

e The “torm factors” G, G,, G, H,H,H,,¢g,g,¢g,h,h,h are

1 7722 773
functions of the Mandelstam variables t, s-u



Construction of Scattering Amplitude

Scattering amplitude:

M = a(k")Tu(k) - a(p')Paulp) = a(k')(Trv + Tra)u(k) - a(p’) Loy + Taa)u(p)

Parity properties: = Parity conservation prohibits mixture
of terms with different parity property
Vector * Vector +1 in total amplitude
Vector * Axial vector -1« Leading-order QED contains only

. vector vertex, total amplitude has
Axial vector * Vector -1 oy . P
positive parity

Axial vector * Axial vector +1 : :
v We only need to consider terms with

positive parity in the total amplitude.

M = a(K" )Civu(k) - a(p’) Pavu(p) + a(E ) au(k) - a(p’)2au(p)




Construction of Scattering Amplitude

Vector-vector coupling:

w(KTlyu(k) = a(k) [y G1 + G2 KP + G3q”] u(k)
>< |

u(p)Iyulp) = a(®’) [vg1 + g2 P + g3q”] u(p)
Take only the terms with positive charge parity in the product:
u(k )Livu(k)ap )Lavu(p) = g1Gra(k') v u(k)u(p’)v,u(p)
+ (92G2K - P+ g3GoK - ¢+ G392P - g + 93G3q”) u(k )u(k)u(p’)u(p)

Remember: ¢- K =q- P=0
u(k")Tyyvu(k)u(p)Tavu(p) = g1 Gra(k" )y u(k)u(p')y,u(p)
+ (92G2K - P+ 93G3q2) u(k")u(k)u(p’)u(p)

(k" Tivu(k)a(pTayvu(p) = Fra(k )y u(k)a(p")y,u(p) + Foa(k u(k)a(p')u(p)




Construction of Scattering Amplitude

Vector-vector coupling:
u(k )Livu(k)a(p )Lavu(p) = Fra(k)y uw(k)u(p')voulp) + Fou(k)u(k)u(p’)u(p)
Similarly, for axial vector-axial vector coupling, we have

u(k"\Trau(k)u(p")Teau(p) =Fsu(k' )y v u(k)u(p )vp,y ulp) + Fyu(k')y - Py u(k)a(p’)y u(p)
+ Fsu(k" )y u(k)a(p)y - Ky u(p) + Feu(k' )y u(k)u(p')y u(p)

e In total we have six “form factors”

e The six “form factors” depend on two independent kinematic variables
s-u and t



ep Scattering Beyond the OPE approximation

ep scattering beyond the Born approximation:

4o _, _ o~ ~ vi q, |~ v P*
M= e u'y'u-N'(F,y'—F,[y",y ]4M+F3Kvy F)N
Gg=F,—1F, \\
G,=F+F, Born contribution + 1yx2y interference

e The three complex amplitudes depend on both Q2 and ¢

* They go to the Born form factor GE, GM, and O respectively in the
one-photon approximation

 The deviations from the Born form factors are of the same of the fine-
structure constant



Observables beyond the Born approximation:

Rosenbluth separation method: Polarization transfer technique:
o :M[Hs‘&’irﬁs(ﬁ@)m( vE, )] iﬁ—\/ i [‘?E"f(l— a ‘?E‘ER( Vﬁf )]
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vF
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Guichon & Vanderhaeghen, Phys. Rev. Lett. 91 (2003) 142303
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FIG. 3. The ratio YE?,P versus ¢ for several values of Q°.
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At Q*=3(GeV)?, we get from the polynomial fit given in the paper:

Hp R?i{opsenbluth = 0.625

lupRgoI;enbluth = 0.801

Solve the system of equations for IGEl/|Gax and Ya., I get

uplGEl /|G| = 0.56
Y2, = 0.0249
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