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Abstract

DLAMINI, MONGI, Ph.D., December 2018, Physics and Astronomy

Measurement of Hard Exclusive Electroproduction of π0 Meson Cross Section in Hall A

of JLab with CEBAF at 12 GeV (227 pp.)

Director of Dissertation: Julie Roche

A complete description of nucleon structure requires the simultaneous knowledge of

both the spatial and momentum information of the ultimate constituents of the nucleon,

the quarks and gluons. Generalized Parton Distributions (GPDs) provide such tools to

describe nucleon structure. GPDs are measurable through hard exclusive processes like

Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production

(DVMP). GPDs can describe hard exclusive processes only if Bjorken factorization is

achieved during the hard scattering process. While DVCS data have given hints of the

factorization regime being attained, such hints have not been observed for DVMP data.

Testing for factorization in DVMP processes is the topic of this thesis. Exclusive π0

electroproduction has been measured by experiment E12-06-114 in Hall A of JLab. Cross

sections have been measured at three fixed Bjorken-x (xB): 0.35, 0.48 and 0.6 in the Q2

range 3 to 9 GeV2. In this document we present an analysis of a subset of the data: xB =

0.35 in the Q2 range 3.1 to 4.5 GeV2. The different structure functions: unseparated cross

section (σT + ǫσL), longitudinal-transverse interference (σLT ), transverse-transverse

interference (σTT ), and the polarized response (σLT ′) terms were extracted. The data was

compared to a transversity GPD model. The model fails to reproduce the data even though

the order of magnitude is in agreement for both model and data. We observe a strong

disagreement between the data and the model for σLT in terms of both magnitude and the

cross section sign. Our results are in a larger and wider Q2 domain but they are in

agreement with existing measurements.



4

Acknowledgments

I would like to express my utmost gratitude to my supervisors: Julie Roche and Paul

King. Not only did they give me the opportunity to work in DVCS but they also invested

all their resources in terms of expertise, time, patience, motivation and financial support.

They have guided me since my first encounter with this field of nuclear physics up to this

point. I have worked extensively in particular with Julie Roche and I have always envied

her enthusiasm, deep understanding of physics and the ease with which she disintegrates a

complex problem into small units easy to deal with. I am grateful for the opportunities

Julie has availed to me in terms of exposure to a large scientific community and world

class experimental facilities like JLab. Through working with Julie I have gained valuable

knowledge which I think no single school program can offer and I will always be indebted

to her.

My gratitude also goes to members of the Hall A DVCS Collaboration who have and

continue to play significant roles in building me up as a scientist. I will always be grateful

for the warmth with which I was welcomed into the group and the interest they always

have about my work. Special thanks to Carlos Muñoz-Camacho, Charles Hyde and
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angle between the lepton and the hadronic planes, φ. The red dots show the

measured cross section for each bin in φ. A binned maximum likelihood fit

was used to extract the amplitude of the modulations and the result is shown

by the red curve. This figure was taken from Ref. [13]. See re-use permission (8)

in Appendix C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

1.21 The kinematic domain, Q2 as a function of xB for past (H1, ZEUS, HERMES,

TJNAF at 6 GeV) and future (COMPASS, TJNAF at 12 GeV) DVCS

measurements. This figure was taken from Ref. [46]. . . . . . . . . . . . . . . 81

1.22 DVCS Hall A results: Helicity dependent cross section (top panel) and helicity

independent cross section (bottom panel) shown as a function of the azimuthal

angle φ. These are the first (2004) DVCS results from Hall A of JLab and they

proved the feasibility of such (DVCS) experiments in Hall A kinematics. This

figure was taken from Ref. [9]. See re-use permission (5) in Appendix C. . . . . . . . 82

1.23 DVCS Hall A results: Compton Form Factors (CFF) extracted from the

2004 DVCS experiment in Hall A. In the limited Q2 coverage of the 2004

experiment, the CFF’s show some early signs of scaling. This figure was taken

from Ref. [9]. See re-use permission (5) in Appendix C. . . . . . . . . . . . . . . . . 83
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2.1 A cartoon showing the experimental set-up of E12-06-114 in Hall A of JLab. . 86

2.2 DVCS scaling in Hall A of JLab. The Q2 domain possible with the 6 GeV

beam is shown in gray and the kinematic coverage of the 12 GeV beam is

shown in black. Also shown are the kinematic variable (xB) points at which the

Q2 scan was performed. This figure was taken from [16]. See re-use permission

(3) in Appendix C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.3 A demonstration of two different kinds of π0 decays. When the π0 decays

with both photons emitted perpendicular to the direction of the boost in the π0

center of mass, the decay is symmetric (top panel) otherwise (bottom panel) it

is asymmetric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.4 ep → epX missing mass squared. The peak (at 0.88 GeV2) is the recoil

proton mass squared and its width is dominated by the energy resolution of the

calorimeter. The black spectrum is the missing mass plot of all electron-photon

coincidence events. The green spectrum represents accidental electron-photon

coincidences (background) and the blue plot represents a contamination by π0

events which have only one photon detected. Subtracting the accidentals and

the π0 contamination results in the red plot. This figure was taken from [50]. . . 92

2.5 CEBAF with the 12 GeV upgrade. The injector is represented by the green box

close to hall A and it is viewed by the North linac. The beam is injected into the

North linac and passed to the South linac for a complete pass. The two linacs

initially had 20 cyromodules each. With the 12 GeV upgrade, 5 cryomodules

have been added to each linac and a new hall D has been installed in addition

to the already existing halls A,B and C. . . . . . . . . . . . . . . . . . . . . . 94

2.6 An illustration (by F. Gross [54]) of the duty factor for an accelerator and its

impact on the level of contamination by from accidental coincidences. This

figure was taken from Ref. [54]. See re-use permission (1) in Appendix C. . . . . . . 96

2.7 A schematic showing the layout inside JLab’s Hall A. The green and yellow

structure on the left represents the left arm of the High Resolution Spectrometer

(HRS). The blue and cyan structure on the right represents the right arm

(RHRS). The yellow structure where the two arms seem to meet is the target

chamber. The yellow line that runs straight represents the beamline running

from the beam entrance to the hall (bottom left corner). Between the beam

entrance and the target chamber, there is a series of beamline instruments

(BPMs,BCMs, polarimeters, etc.) used to transport and measure properties

of the beam as discussed in the text. . . . . . . . . . . . . . . . . . . . . . . . 97

2.8 A schematic of the Møller polarimeter. (a) shows the side view and (b) shows

the top view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.9 Cross section view of the HRS showing the magnet set-up (Q1Q2DQ1

arrangement) for each spectrometer. This figure was taken from Ref. [52].

See re-use permission (10) in Appendix C. . . . . . . . . . . . . . . . . . . . . . . . 105
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2.10 Saturation of the SOS Q1 used for the Fall 2016 kinematics [58]. Saturation

started beyond 2.75 GeV where the ratio of the relative field per unit

momentum drops below one. In a non-saturated field, the ratio should stay

constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

2.11 Cross section view of the HRS detector package. The arrow shows the nominal

particle trajectory through the detector stack. . . . . . . . . . . . . . . . . . . . 108

2.12 The front face of the DVCS calorimeter showing the 208 PbF2 blocks already

stacked. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.13 Schematic of a CODA configuration [60]. . . . . . . . . . . . . . . . . . . . . 112

2.14 An example of ARS signals recorded in a 128 ns window. The ARS take a

snapshot of the signals every nano-second and provide a good time and energy

resolution for subtracting pile-up events like the one shown in this figure. This

figure was taken from Ref.[4]. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.15 The logic for the dedicated DVCS trigger. . . . . . . . . . . . . . . . . . . . . 116

2.16 Calorimeter showing block numbers and the size of the ADC signal in each

channel. Most channels show the pedestal, which is about 60 ADC channels.

The right panel shows the case where once cluster has been found and the left

is an example of a two cluster (likely a pion) event. . . . . . . . . . . . . . . . 116

3.1 An example of a baseline (noise) fit. The PMT signal is shown in black and

the fit is shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.2 A one pulse fit (red) of the PMT signal (black). . . . . . . . . . . . . . . . . . 122

3.3 An outcome of a two pulse fit (red) of a PMT signal (black). . . . . . . . . . . 123

3.4 Illustration of the clustering algorithm with the selected blocks of impact in

violet and the local maxima shown in red for each cluster. . . . . . . . . . . . . 125

3.5 A comparison of the reference pulse extracted for trigger number 3 from the

Fall of 2014 and Spring 2015 data sets. A reflection caused some bumps at the

trailing tail of the pulse in the Fall. This had been fixed for the Spring run. . . . 127

3.6 Properties of the reference shapes for all calorimeter blocks. Top panel: Rise

times (left) and fall times as a function of trigger number. Bottom panel: Full

Width at Half Maximum for all blocks. All the blocks have similar signals

except for blocks 49 and 170. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.7 The energy resolution (GeV) as a function of the fit parameter χ2
0

(left panel)

and the elastic invariant mass W2 as a function of χ2 (right panel). This figure

was adapted from F. Georges in his report to the Hall A DVCS collaboration [68].130
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3.8 Calibration of the spectrometer-calorimeter coincidence times.Left channel:

the spectrometer-calorimeter coincidence times (average coincidence time for

events) as a function of calorimeter channels for a few kinematics. Since the

different kinematics have the calorimeter at different distances from the target,

the arrival times for each channel vary from one setting to the next. Right panel:

the spectrometer-calorimeter coincidence time with all the channels considered

at once after calibration using the channel-dependent arrival times (shown on

the left panel). After this calibration, we have a global calorimeter time and

we can apply a universal timing selection criteria to select events for final cross

section analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.9 Scintillator paddle corrections: time offsets for each scintillator paddle. These

were used to shift the coincidence time corresponding to each paddle to be

zero-centered. A difference in the momentum setting of the spectrometer is

responsible for the varying correction factors for each paddle as a function of

the kinematic setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.10 Slopes (right) and intercepts (left) for each scintillator paddle. These were

extracted by empirically studying the correlation between the arrival time and

the non-dispersive position (y) for each scintillator paddle. The intercepts are

negligible and can be ignored. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.11 Slopes (right) and intercepts (left) corresponding to each scintillator and

extracted by looking the the correlation between the theta angle and the

coincidence time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.12 Slopes (right) and intercepts (left) corresponding to each scintillator and

extracted by looking the the correlation between the momentum fraction and

the coincidence time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.13 A summary of the coincidence time calibration and optimization results. Top

left: widths (sigmas) of the time distribution as a function of calorimeter block

before any correction is applied. Top right: widths of the time distribution

per block as a series of accumulating time corrections are applied as shown

in the legend. Bottom left: An example of histogramed final corrected widths

for all 208 calorimeter blocks in kinematic 36 1. With an energy cut of 150

MeV, an average of 0.85 ns was achieved. Bottom right: The final calibrated

and optimised calorimeter time shown for kinematic 48 3. The 4 nanoseconds

beam structure can be seen in the coincidence time distribution. . . . . . . . . . 138

3.14 The calorimeter face showing the three different settings used to fully

illuminate the calorimeter’s acceptance during the elastic calibrations. For the

calibration the central momentum of the HRS (PHRS ) was 3.0 GeV, the central

angle of the HRS (θHRS ) was 32.5o, the beam energy (EB) was 6.4 GeV and the

calorimeter was placed at 6.0 m from the target. . . . . . . . . . . . . . . . . . 142
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3.15 Criteria for selection of good elastic protons in the HRS. Left panel: a 2D plot

of the horizontal scattering angle (L.tr..tg ph) and the fractional deviation of

the protons’ momentum from the central momentum of the HRS (L.tr.tg dp).

The elastic line (elastic protons in the spectrometer) can be seen on top of

background. Right panel: the reconstructed vertex z-coordinate and the applied

cuts represented by the region in-between the two red vertical lines. . . . . . . 143

3.16 Elastic calibration results for the February 2015 calibration. Top panel: the

energy of elastic electrons reconstructed in calorimeter is shown on the left.

On the right is the energy resolution obtained from the elastic calibration. A

3.0% energy resolution was obtained at an average 7 GeV elastic electron.

Bottom panel: a plot of the extracted calibration coefficients as a function of

block number on the left and the same coefficients histogrammed on the right

panel. Excluding the blocks at the edges, calibration coefficients are within 5%

in agreement across all other blocks. The edge blocks have fewer neighbors

and hence more susceptible to energy leaks, therefore they have higher than

average calibration coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . 145

3.17 Calibrated ARS energy (horizontal axis) and the ADC signal (vertical axis)

for calorimeter channel 2 from October 2016 elastic data. The blue points

represent the data and the red line is a fit to the data. From the fit, the slope

(calibration coefficient for this channel) is about 160 ADC channels per GeV.

The ”y”-intercept (ADC pedestal) is about 60 ADC channels. . . . . . . . . . . 148

3.18 Angular resolution for the Fall 2014 elastic data. The top panels show the

global resolutions across the whole calorimeter face. The bottom panels show

the resolutions for 3 different regions on the calorimeter face. The calorimeter

cannot be fully illuminated at one setting hence 3 settings (in the case of

the 2014 data the spectrometer angle and momentum setting but for later

calibrations it was the calorimeter angle) were used. . . . . . . . . . . . . . . . 152

3.19 Calorimeter calibration optimization with π0 mesons. Left panel: the π0

rest mass reconstructed using the calibration coefficients from the elastic

calibration only. Right panel: the π0 rest mass reconstructed using both the

elastic calibration coefficients and the optimal values extracted from the π0

optimization procedure. We are able to recover better the π0 rest mass (∼ 0.135

GeV) after the optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

3.20 Pileup studies with different beam currents on the target. Left panel: A section

of the calibrated coincidence time window illustrating the coincidence peak

centered at zero (area shaded in red). Away from the coincidence peak is a

flat accidental or background region. To estimate the background under the

coincidence peak, we look at a time window in the background region (area

shaded in black). Both the coincidence and accidental window were chosen to

be the same width in time. Right panel: Noise to signal plus noise ratio for Fall

2014 (kin36 1) data showing an increase of the background with current. . . . 156
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3.21 The resolution of the π0 invariant mass as a function of beam current and

the choice of one-pulse and two-pulse fitting techniques. The resolution

worsens faster for single-pulse fitting (compared to two-pulse fitting) as current

increases. For the final waveform analysis of all the data, the two-pulse

technique was used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.1 The Hall A vacuum scattering chamber as implemented in the simulation

is shown here as the cylindrical mesh of blue lines. Also shown is the

implementation of the beam dump (labelled Lead Pipe), the spectrometer

(HRS) entrance, HRS window, some shielding and the target cell inside the

scattering chamber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.2 Examples of cases of real and virtual radiative effects at first order shown

here for electrophoton production. (a) Virtual radiative effect: an electron

emits a photon before scattering and reabsorbs it after, altering the electron’s

momentum on both sides of the vertex. (b) Virtual radiative effect: vacuum

polarization where a virtual photon converts into an electron-positron pair. (c)

Real photon emitted either before the vertex or after. . . . . . . . . . . . . . . 162

4.3 A schematic flow of the Monte-Carlo simulation. . . . . . . . . . . . . . . . . 167

4.4 The position dependent calibration coefficient µ (in GeV) shown on the left

panel and the smearing parameter σ (GeV) on the right panel. . . . . . . . . . 169

4.5 The angular resolution as a function of position on the calorimeter face. The

resolution is driven by both the proximity to the beamline (worse closest to the

beamline because of a high accidental rate) and the quality of the PbF2 crystals. 170

4.6 Spectrum of the π0 production missing mass (ep → eγγX) of the Monte-

Carlo simulation compared to data. Left: Before the smearing and calibration

procedure. Right: After calibration and smearing procedure. . . . . . . . . . . 170

4.7 Spectrum of the π0 invariant mass of the Monte-Carlo simulation compared to

data. Left: Before the smearing and calibration. Right: After calibration and

smearing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.8 The migration probability matrix for the first term in the cross section

parametrization of equation 1.40, shown here for Kin36 1. The horizontal axis

shows the binning in the momentum transfer to the proton at the vertex (tv).

The vertical axis shows binning in the reconstructed momentum transfer (tr)

as a function of binning in the angle between the hadronic and the leptonic

planes (φ). Each tr bin is divided into 12 φ bins. The dense diagonal is the case

where both the vertex and reconstructed kinematics fall in the same t bin and

the off-diagonals are cases where tr
, tv (bin migration cases). . . . . . . . . . 174

4.9 The number of events (from experiment) in a tmin - t bin of Kin36 1 is shown

as the black points with the associated statistical errors. The red histogram

represents the number of events in the same tmin - t bin as estimated by the

Monte-Carlo simulation. The cross section is extracted by minimizing the

difference between the experimental number of events and the estimate of the

simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
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5.1 Electron PID selection. Top left: the Cherenkov ADC spectrum for π0 events

in kin36 1 without any cuts (blue) and with the pion rejector cuts (red). The

minimum ionization peak (single photon peak) is centered at 150 channels as

seen on the blue spectrum. Top right: the pion rejector sum plotted against the

first layer of the pion rejectors. The dash-dotted lines represent cuts applied

to both the pion rejector sum and the first layer of the pion rejectors. Bottom

panel: energy deposited in the electromagnetic calorimeters (pion rejectors) of

the spectrometer without any cuts applied. Three distinct regions can be seen

and selection cuts can be easily applied to suppress pion and medium energy

electron events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.2 The z-coordinate of the vertex of the reaction along the target for kin36 1

shown for runs taken at 5 µA only. The peaks at the edges correspond to events

scattered off the aluminium walls of the target cell. The vertical dotted lines

represent the selection cuts along the vertex, only events between them were

selected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.3 Phase space of kin36 1 shown for both simulation and the experimental data.

Left panel: with no R-cuts. Right panel: with R-cuts implemented. . . . . . . . 181

5.4 Hall A coordinates for scattered electron into the spectrometer and the variables

which define the spectrometer acceptance as shown in Ref. [52]. L is the

distance from the hall center to the entrance of the spectrometer, D is the

displacement of the spectrometer axis from its ideal position. θ0 is the

spectrometer central angle setting. . . . . . . . . . . . . . . . . . . . . . . . . 182

5.5 π0 selection based on energy and momentum conservation. Left panel: raw

invariant mass against missing mass distribution for kin36 1. Right panel: the

invariant mass vs. missing mass distribution after corrections and removal of

the correlation. The red box illustrates the selection cuts given in table 5.2. . . . 184

5.6 The time distribution of two photon events with respect to the scattered

electron. Time corrections have been applied such that the time of each photon

is relative to the detection of an electron in the spectrometer. The diagonal

structure represents two photons in coincidence, of which some make up Nacc.

The horizontal and vertical bands represent a case where an electron is in

coincidence with one of the two photons only, some of which make up Ncac.

Away from the vertical, horizontal and the diagonal bands, we have purely

random events which are totally uncorrelated, Naaa. The boxes show the time

windows which were studied and their labels indicate the content of each time

window in terms of the possible combinations of triple coincidences in each. . . 188

5.7 The tracking efficiency (left panel) and the livetime (right panel) as a function

of run number. This kinematic was taken at 3 different beam currents and that

is visible from the 3 distinct ”regions” in both the tracking inefficiency and

livetime plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
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5.8 A cartoon showing an array of three detectors. To calculate the efficiency of

say detector 2, we exclude it from the trigger and record events which have

fired detectors 1 and 3. Out of the recorded events (seen by both 1 and 3), we

count how many have also fired detector 2. The ratio of these two numbers

give us the efficiency of the detector. . . . . . . . . . . . . . . . . . . . . . . . 190

5.9 Final data sample after the event selection and accidental subtraction criteria.

On the left panel is the data as a function 12 bins of the angle φ and the right

panel shows the data as a function of 5 bins t. . . . . . . . . . . . . . . . . . . 194

5.10 The ratio of the experimental DIS cross section (σExp.) in kinematic setting

kin36 1 (of experiment E12-06-114) to the world data (σworld) in similar

kinematics, as a function of run number. On average our DIS cross section

is systematically 11% smaller than the world data. This discrepancy is

an indication that we do not properly understand our luminosity and or

the spectrometer’s acceptance yet. We account for this by including this

uncertainty as a systematic as discussed in the text. This figure was adapted

from B. Karki in his report to the Hall A DVCS collaboration [99]. . . . . . . 197

5.11 Propagation of uncertainty on the cross section as a result of cutting on the

proton missing mass and reconstructed π0 mass. The left panel shows a 2

dimensional plot of proton mass (horizontal axis) and π0 mass (vertical axis).

The rectangles in different colors mark the different cuts used to evaluate the

systematic uncertainty. Each rectangle color corresponds to a point (same color

as rectangle) on the right panel. Right panel: one tmin − t bin of the extracted

cross section parameter σLT as a function of the cuts shown on the left. The

blue horizontal dotted line is the line of stability for this cross section, where
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cuts. The green vertical dotted line is point beyond which the exclusivity of the
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as the difference between the stable region (blue line) and the extreme physics

cut (green line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
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The shaded area shows the systematic precision as summarized in table 5.5 for
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5.13 The extracted transverse-longitudinal interference π0 electroproduction cross
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Bottom panel: results for kin36 3. The blue dashed lines show predictions GK
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20

5.14 The extracted transverse-transverse interference π0 electroproduction cross

section terms σTT . Top panel: results for kin36 (left) and kin36 2 (right).

Bottom panel: results for kin36 3. The blue dashed lines show predictions GK

model [73]. The shaded area shows the systematic precision as summarized in
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Nomenclature

ARS Analog Ring Sampler

BCM Beam Current Monitors

BH Beithe-Heitler

BPM Beam Position Monitors

CEBAF Continuous Electron Beam Accelerator Facility

CER Cherenkov

CFF Compton Form Factors

CLAS CEBAF Large Acceptance Spetrometer

CODA CEBAF Online Data Acquisition

COMPASS Common Muon and Proton Apparatus for Structure and Spectroscopy

CPU Central Processing Unit

DA Distribution Amplitude

DAQ Data Acquisition

DIS Deep Inelastic Scattering

DVCS Deeply Virtual Compton Scattering

DVMP Deeply Virtual Meson Production

EB Event Builder

ER Event Recorder
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GPD Generalized Parton Distribution

HERA Hadron-Electron Ring Accelerator

HRS High Resolution Spectrometer

LHRS Left High Resolution Spectrometer

PAC Program Advisory Committee

PID Particle Identification

PMT Photo-Multiplier Tube

pQCD Perturbative Quantum Chromodynamics

QCD Quantum Chromodynamics

QED Quantum Electrodynamics

ROC Read Out Controller

TJNAF Thomas Jefferson National Accelerator Facility

UV Ultra-Violet

VGG Vanderhaeghen-Guichon-Guidal
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Introduction

Electrons, protons and neutrons are the building blocks of the visible matter of the

universe. The electron was discovered in 1897 by J.J. Thompson, the proton in 1919 by E.

Rutherford and the neutron in 1932 by J. Chadwick. Electrons are structure-less and their

interaction with matter is described by a mathematical framework known as Quantum

Electrodynamics (QED). Protons and neutrons are building blocks of the nucleus and are

collectively called nucleons. Until 1933, nucleons were thought to be structure-less like

electrons. This picture changed when O. Stern (1933) measured the magnetic moment of

the proton and found it to be approximately twice as large as predicted for elementary

particles of spin 1
2

and mass m.

Experimental and theoretical efforts have led to the description of nucleons as

extended bodies composed of quarks and gluons, and as part of a class of particles called

hadrons. The mathematical framework which describes the dynamics of hadrons from the

interactions of quarks via the exchange of gluons is called Quantum Chromodynamics

(QCD) and the QCD force (the strong force) is responsible for keeping nucleons and

nuclei as a unit. Interactions governed by the strong force are called strong interactions.

The QCD Lagrangian (a mathematical formulation which contains information about the

dynamics of a system) is [1]:

L =
−1

4
Ga
µνG

aµν +
∑

f

ψ̄ f (i/∂ + g /A − m f )ψ f , (0.1)

where:

• ψ f is a quark field, a function of space-time,

• Gaµν represents a gluon field strength tensor,

• /A is a gauge invariant derivative,
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• m f is the quark mass.

Unlike photons, the force carriers of the electromagnetic (QED) interactions, gluons also

interact among themselves and that self-interaction is represented by the gluon field tensor

term (first term) in Eq.( 0.1). The quark field term (second term) describes the quark

contribution in QCD interactions. As it can be seen in Eq.( 0.1), the QCD Lagrangian is

derived in terms of quark and gluon degrees of freedom. However, in the non perturbative

scale in QCD one never realizes free quarks and gluons but instead encounters hadrons.

This brings a challenge to design experimental techniques to study the behaviour of

particles which can not be isolated from one another. As a result we still have many

mysteries about QCD and strong interactions in general. One interesting aspect of QCD is

that compared to the other forces of nature (weak, electromagnetic, and gravitational), the

strong coupling constant (αs) varies drastically as a function of the energy scale or

momentum transfer [2, 3]. Figure 0.1 shows the status of the current experimental

measurements and theoretical calculation of the running of αs. This principle of a running

αs leads to two important consequences:

1. Asymptotic freedom: at very short distances (high energy transfers), αs becomes

small. A small αs means strong interactions get suppressed, reducing the interaction

between quarks and gluons. In this configuration a relativistic lepton probe can

interact with just one “isolated” nucleon constituent as the rest of the nucleon

appears to be relatively “frozen”. This allows a perturbative treatment of QCD and

an experimental access window where QCD calculations have been tested [4].

2. Confinement: at large distances (comparable to hadron size), the strong coupling

constant increases [5]. As a result, there are no free quarks. Understanding QCD in
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Figure 0.1: Experimental measurements and theoretical calculation of the strong coupling

constant αs as a function of the momentum transfer in QCD processes. This figure was

taken from Ref. [3]. See re-use permission (1) in Appendix C.

the confinement regime is a challenge that has become an important occupation in

nuclear physics.

In as much as QCD explains how the constituents of nucleons interact, there is still a

number of outstanding questions related to the nucleon system:

• How is the nucleon (and other hadrons) constructed from the basic QCD degrees of

freedom, quarks and gluons?

• What does the interior of a nucleon look like in terms of quark-gluon distribution?

• How much of the nucleon spin is carried by the quarks and how much by the

gluons?
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• How does mass arise from the interaction of essentially massless quarks and gluons?

In the absence of analytical answers to these and many other questions, experimental

advances and nucleon structure models play a significant role in investigating nucleon

systems [6].

Many frameworks have been formulated to investigate the structure of nucleons

based on their ultimate constituents. The parton model describes the nucleon as an

extended body made of 3 valence quarks and a sea of fluctuating quarks and gluons [6, 7].

These nucleon constituents are called partons and each parton is understood to possess a

fraction of the nucleon’s momentum and to contribute to a fraction of the nucleon’s spin.

GPDs build on the parton model to introduce functions which parametrize the nucleon

structure by presenting the correlation between position and momentum of quarks and

gluons. The GPD framework provides an access to a three dimensional tomography of the

partonic structure of the nucleon. A clean way to measure GPDs is the Deeply Virtual

Compton Scattering (DVCS) process [1]. DVCS is a process where a lepton scatters off a

quark via the exchange of a virtual photon. The quark absorbs the virtual photon and later

emits a real photon as the quark gets re-absorbed by the parent nucleon. GPDs can also be

accessed via Deeply Virtual Meson Production (DVMP) which proceeds the same way as

DVCS but instead of a real photon, a meson (quark-antiquark bound state) is produced in

the final state.

Pioneer DVCS experiments were conducted about two decades ago and they

confirmed the feasibility of measuring the DVCS process. These measurements were

performed by the H1 and ZEUS collaborations at HERA, the HERMES collaboration at

DESY and the CLAS collaboration at the Thomas Jefferson National Accelerator Facility

(TJNAF, aka JLab). These original experiments resulted in low statistical significance

because they were run in already experimental facilities, not dedicated DVCS set-ups [4].

Later on, the HERMES collaboration performed dedicated experiments and extended the
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measurement of DVCS asymmetries to intermediate regions in momentum fraction xB

with an impressive collection of target and beam polarization states [8]. At JLab, the Hall

A collaboration [9] and CLAS in Hall B [10] measured absolute cross sections in the

valence xB region, however at low photon virtuality (Q2).

Experiment E00-110 [9] was the first generation of DVCS in Hall A and it was

conducted in 2004. A second generation DVCS experiment was conducted in Hall A in

2010. These pioneer experiments (both 2004 and 2010) confirmed the feasibility of

experiments of this kind and even though they were at low Q2 they both showed hints of

the validity of the GPD formalism in parametrizing proton structure for the

electro-production of photons (DVCS). However, results from the second generation [11]

are in contradiction with assumptions of the GPD formalism for the π0 electro-production

cross section. It is found that the cross section is dominated by a contribution from

transversely polarized photons [11], something which the GPD formalism claims is only

possible at next to leading order. Recent beam spin asymmetries by CLAS [12] and π0

muon production cross section at COMPASS [13] are also in agreement with the findings

by Defurne et al. [11]. This leaves the interpretation of π0 (neutral pseudoscalar mesons in

general) electro-production in the GPD formalism with more questions and introduces the

case of the participation of some elusive structure functions know as transversity GPDs at

leading order, something not expected according to the GPD formalism. These findings

make the electro-production of π0 a good hunting ground for the elusive transversity

GPDs and a catalyst for the extension of the GPD formalism.

Experiment E12-06-114 is the basis for this thesis. It utilized the same (but expanded

apparatus) as the earlier generations of DVCS experiments in Hall A of JLab. Moreover,

this experiment was conducted with the recently upgraded electron beam energy (from 6

GeV to 12 GeV). A higher energy is necessary to attain the QCD configuration at which

the GPD formalism is valid. A wider energy range is necessary to perform measurements
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as a function momentum transfer and hence pin down the validity of the GPDs as the

appropriate objects to parametrize proton structure. This experiment received the highest

scientific rating by the JLab Program Advisory Committee. It is one of the first

experiments to take place after the new energy upgrade because it is considered as having

a high impact in the field of nuclear physics research [6].

I joined the DVCS experiment in the Fall of 2013 and participated in the

commissioning of the apparatus for the 12 GeV experiment. In the spring of 2014, we

started collecting our first data point which also happens to be the point of investigation of

this thesis. Despite some accelerator challenges associated with the CEBAF’s new

upgrade, we managed to collect more data points in the Spring and Fall of 2016. All of

these data are undergoing analysis and we are looking forward to the results and their

impact on this field of nuclear physics. This thesis presents in particular the

electro-production cross section of π0 at momentum fraction xB = 0.36, photon virtuality

(Q2) range of 3.1 to 4.47 GeV2 and center of mass energy (W) of 2.58 to 3.0 GeV. This

document is organized as follows:

• Chapter 1 is an introduction of the theoretical framework and background in the

study of the nucleon structure in the parton picture. The Generalized Parton

Distribution framework is also presented. In this chapter the experimental context of

nucleon structure study, with particular emphasis on DVCS and DVMP (in

particular π0 production), is also presented.

• Chapter 2 presents an overview of the apparatus of the experiment (Experiment

E12-06-114). This includes an overview of the standard Hall A equipment at JLab

and the additional DVCS electromagnetic calorimeter. A brief overview of the

accelerator facility is also given.
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• Chapter 3 is about the analysis of one vital component of this experiment, the

electromagnetic calorimeter used to detect DVCS photons and pions. This chapter

introduces the tools used in interpreting the calorimeter data. Characterization and

calibration of this detector are also discussed. I have spent a considerable amount of

time working on the calorimeter from its operation in the hall, calibration and offline

data analysis.

• Chapter 4 introduces and discusses the Monte-Carlo simulation used in the analysis

to compute the acceptance of the Hall A spectrometer. In this chapter we also

introduce the procedure used to fit and extract the cross section. I worked from a

standard DVCS simulation, optimized and calibrated the simulation’s calorimeter

resolution to the data.

• Chapter 5 discusses the data analysis in terms of identifying the DVMP (π0) channel

and presents the results obtained. I wrote computer programs to select exclusive π0

events and eventually extract the cross section.

Both the DVCS and Hall A collaborations are big and each final result embodies

contributions from a lot of people. I have summarized the aspects of experiment

E12-06-114 leading to the results presented in this document by the flowchart in

Fig. 0.2. My contributions to the experiment are represented by the boxes with red

text in the flowchart.



30

DATA TAKING (On the loor Fall 2014 – Fall 2016)DATA TAKING (On the loor Fall 2014 – Fall 2016)

Selection of pion 
sample

Extraction of cross 
Section

(Chapters 3 , 4 & 5)

Selection of pion 
sample

Extraction of cross 
Section

(Chapters 3 , 4 & 5)

Calibration 
of

HRS

Calibration 
of

HRS

Data quality 
Analysis

(Chapter 3)

Data quality 
Analysis

(Chapter 3)

Beam-line 
calibration

Beam-line 
calibration

Calibration 
of

Calorimeter
(Chapter 3)

Calibration 
of

Calorimeter
(Chapter 3)

Simulation:
Calibration 

and 
Smearing

(Chapter 4)

Simulation:
Calibration 

and 
Smearing

(Chapter 4)

Benchmarking
 analysis 
against

 known DIS

Benchmarking
 analysis 
against

 known DIS

Figure 0.2: A flowchart of the aspect of experiment E12-06-114 leading to the results

presented in this document and my contributions to the process. My contributions are

indicated by the boxes with red text.
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1 Nucleon structure via electron scattering

There are basically three methods employed by physicists to study the structure of

nucleons and hadrons in general;

• through the scattering of high energy structureless particles off hadrons,

• through the study of the excitation spectrum of hadrons through the production of

resonant states, also known as hadron spectroscopy and

• through the collision of energetic ion beams, also known as heavy-ion collision.

All these methods have played significant and complimentary roles in informing on

nucleon structure and QCD in general. As a structureless electromagnetic probe, the

electron has been and continues to be an excellent tool to study hadrons. Three main

reasons make the electron the ideal tool for taking ”pictures” of the internal landscape of

nucleons:

• QED is a well understood interaction,

• the QED coupling constant is small, αQED ≈ 1
137

, and this allows a perturbative

treatment of QED governed processes and

• electrons can be accelerated in well-defined mono-energetic beams and be

accurately detected.

This knowledge of QED gives us a well defined and controllable interaction for our

probe. It was through electron scattering experiments in the 1950s and 1960s that the

composite structure of the proton (and hadrons in general) was revealed. In electron

scattering, two techniques have been historically used to probe hadron structure. In one

method called elastic scattering, the electron scatters off a hadron, leaving it intact in the

process. This approach gives access to the electric and magnetic current spatial



32

distributions of the hadron constituents. In the second technique, Deep Inelastic Scattering

(DIS), the hit hadron breaks up into a number of fragments. DIS gives access to parton

distribution functions which tell us the probability to find partons carrying a fraction of the

longitudinal momentum of the hadron.

These two methods have revealed significant information about nucleon structure, for

example, from elastic scattering experiments we have been able to infer the size of the

proton [14]. DIS experiments have made it possible to perform a flavor decomposition of

the momentum distributions in nucleons. However, using these two, one gets either spatial

or longitudinal momentum distribution of the hadron constituents and no access to their

correlation. A correlation between the spatial and momentum distribution can provide an

insight that none of the two techniques can independently give. In the last two decades, a

new technique (Deeply Virtual Exclusive Processes) was introduced. In this technique, an

electron scatters off a nucleon, which recoils and produces a photon in the process.

Interpreted in the formalism of structure functions called Generalized Parton Distributions

(GPDs), this approach combines the information accessible in the two methods mentioned

above to provide a description which can be interpreted as giving a three-dimensional

tomography of the nucleons interior. This is a new and exciting era in QCD studies and

promises to open a new window that will help us understand QCD confinement better.

In the following sections, a brief review of these electron techniques in probing the

structure of hadrons is given.

1.1 Elastic scattering

Two particles scatter elastically if both remain intact to make the final state. In 1911,

Rutherford conducted elastic scattering experiments using alpha particles off a gold

foil [15] and to derive the cross section of the interaction, he assumed a point-like target

and a non-relativistic scattered particle to get:
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(
dσ

dΩ

)

Ruther f ord

=
α

4E2 sin4
(
θe

2

) , (1.1)

where α is the fine structure coupling constant, E is the energy of the incident particle

and θe is the angle of the scattered particle. For relativistic electron projectiles, Eq. ( 1.1)

is modified by the Mott cross section given by:

(
dσ

dΩ

)

Mott

=
α

4E2 sin4
(
θe

2

) cos2

(
θe

2

)
. (1.2)

All these relations (above) hold for a point-like and spin-less target and as a result the

experimental cross section was not in agreement with them. For a non-point-like and

spin-less target (extended target), the cross section is modified to incorporate objects that

encode the structure of the target as follows:

dσ

dΩ
=

(
dσ

dΩ

)

Mott

· |F(∆)|2, (1.3)

where F(∆) is a form factor acknowledging the structure of the target and ∆ is the

momentum transferred to the target. An illustration of electron elastic scattering off a

proton together with a definition of the relevant kinematic variables is shown in figure 1.1.

The scattering occurs through the exchange of a virtual photon emitted by the incident

electron. Electron elastic scattering factorizes the non-perturbative (soft structure)

structure of a hadron into form factors. For low Q2, form factors represent, via a Fourier

transform, the spatial distribution of electromagnetic currents in the nucleon, in the plane

transverse to the nucleon’s direction [16].

The form factors are defined as the matrix elements of the QCD density matrix

between nucleon states of different four-momenta (in space-time coordinates) of the

electromagnetic current operator [17]:
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Figure 1.1: A diagram demonstrating elastic scattering of an electron off a hadron (proton).

k represents the 4-momentum of the incident (projectile) electron, k’ is the scattered

electron 4-momentum, p is the target proton and p’ is the recoil proton. q is the 4-

momentum of the exchanged virtual photon. We also define Q2 = −q2 = −(k’ − k)2 as

the virtuality of the exchanged photon. High virtuality is associated with short wavelengths

and a high resolution of the probing virtual photon.

jµ(x) =
∑

q=u,d,..

Qqψ̄q(x)γµψq(x), (1.4)

where Qq represents the charge of the quark involved in the process (Qu = Qc =
+2
3

for up and charm quarks and Qd = Qs =
−1
3

for down and strange quarks). ψq is the field of
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a quark of a particular flavor and γµ is the field operator. The form factors F1 and F2 then

encode nucleon structure information related to the following operation:

〈p′| jµ(0)|p〉 = N̄(p′)

{
F1(Q2)γµ + F2(Q2)

iσµνq
ν

2MN

}
N(p), (1.5)

where N and N̄ are the initial and final nucleon spinors and MN is the nucleon mass.

The matrix elements encode the probability amplitude of finding a quark at a certain

space-time coordinate in a nucleon with an initial momentum p and creating another quark

at the same space-time coordinate but with a different momentum p’. These matrix

elements are called “local” since the initial and final quark are created or annihilated at the

same space-time point [18]. The process is also called non-forward because the nucleon

undergoes a change of momentum. Since the nucleon is a spin one-half particle, two

functions parametrize the nucleon structure in this regime, F1(Q2) and F2(Q2), the Dirac

and Pauli form factors, respectively. These functions depend on Q2 only. F1(Q2) is related

to the charge distribution in the nucleon and F2(Q2) accounts for the presence of an

anomalous magnetic moment in the nucleon [19]. In the limit where Q2 goes to zero,

where the lepton probe sees the nucleon as a whole, the following relations hold for the

neutron and the proton:

Fn
1(0) = 0 Fn

2(0) = −1.9130 µN

F
p

1
(0) = 1 F

p

2
(0) = 1.7928 µN

(1.6)

Since the proton has unit charge and the neutron has zero, F1(Q2) is unity and zero

for these systems, respectively. The magnetic moment of a point-like proton, in this Q2

limit is expected to be unity, as it should be related to the charge distribution. By a similar

argument, it is expected to be zero for a point-like neutron. Thus the discovery of the

anomalous magnetic moments of the nucleons was a strong indication that nucleons were
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not elementary. F1(Q2) is related to the electromagnetic charge density in the transverse

plane of an unpolarized nucleon through a Fourier transform [19]:

ρ(b⊥) =

∫
d2q

2π
e(iq.b⊥)F1(Q2), (1.7)

where b⊥ is an impact parameter representing the transverse distance of a parton from

the center of mass of the nucleon. F2(Q2) is connected to the quark density in the

transverse plane of a transversely polarized nucleon[19]. In this regime, the unpolarized

cross section is given by [19]:

d2σ

dΩ
=

α2

4E2 sin4( θe

2
)

E′

E

{(
F1(Q2) − Q2

4M2
F2

2(Q2)

)
cos2(

θe

2
) − Q2

2M2

(
F1(Q2) + F2(2)

)2
sin2(

θe

2
)

}
.

(1.8)

Introducing the Sachs electric form factor GE(Q2) and magnetic form factor GM(Q2)

to parametrize nucleon structure, Rosenbluth [20] parametrizes the elastic cross section as

follows:

dσ

dΩ
=

α

4E2 sin2
(
θe

2

) E′

E

[
G2

E(Q2) + τG2
M(Q2)

1 + τ
cos2

(
θe

2

)
+ 2τG2

M(Q2) sin2
(
θe

2

)]
, (1.9)

where τ = −∆2

4M2 and M is the mass of the nucleon. The Pauli and Dirac form factors are

related to the Sachs form factors through:

F1(Q2) =
GE(Q2) + τGM(Q2)

2τ

F2(Q2) =
GM(Q2) −GE(Q2)

1 + τ

(1.10)

A compilation of the world data for GEp and GMp obtained by the Rosenbluth

separation method is shown in figure 1.2.
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Figure 1.2: World data for the Sachs electric form factor GE(Q2) (left panel) and magnetic

form factor GM(Q2) (right panel) obtained using the Rosenbluth method. These figures

were taken from Ref. [21].

See re-use permission (2) in Appendix C.

As briefly mentioned in the introductory section, electron elastic scattering

measurements have been used to calculate the proton charge radius as a derivative of the

Sachs electric form factor GE(Q2) [22]:

R2
p = −6

dGE(Q2)

dQ2

∣∣∣∣∣∣
Q2=0

. (1.11)

Using an extrapolation to estimate GE(Q2) at Q2 = 0, a radius of R2
p = 0.8798 fm

was found [14]. Even though this result is in good agreement with studies done with the

hyperfine structure of hydrogen, it is in a 6-σ disagreement with results of studies done
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Figure 1.3: Measurements of the proton charge radius using different techniques. The

red points show measurements using munoic hydrogen, the blue point is from hydrogen

spectroscopy and the green point is from electron-proton scattering. As seen in the

figure, the electron-proton scattering and hydrogen spectroscopy measurements are in good

agreement but not with the munoic hydrogen results [14]. This figure was taken from

Ref. [22]. See re-use permission (1) in Appendix C.

with the hyperfine structure of munoic hydrogen [22] (see figure 1.3). This discrepancy is

called the proton radius puzzle and as of at the writing of this document (Summer 2018) it

is yet to be resolved.

1.2 Deep Inelastic Scattering (DIS)

In electron-proton scattering at large momentum transfer, the proton is highly likely

to break into smaller units which are difficult to all measure at once but a lot can be

learned by only measuring the scattered electron (ep → e′X). This process is called Deep

Inelastic Scattering (DIS).

At this point we define three more kinematic variables in addition to those introduced

in the previous section (section 1.1):

• the invariant mass of the hadronic final state W2
= (p + q)2,
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• the longitudinal momentum fraction of the nucleon x =
Q2

2p·q and

• the energy of the exchanged virtual photon ν = k’ - k.

DIS is deep in the sense that the photon virtuality Q2 is much larger than the squared

proton mass M2 and inelastic in the sense that the hadronic final state invariant mass W2 is

also much larger than M2 [19]. At these energy scales, the virtual photon has a shorter

wavelength and spatial resolution (a photon of virtuality Q2 can “see” a short-distance

region of the nucleon with a spatial resolution of the order ∆b⊥ ∼ 1
Q2 [19]) relative to the

size of the probed nucleon. At such short distances, the picture of the nucleon appears to

be frozen and the probe is sensitive to the substructure of the nucleon. At first order the

QCD concepts of asymptotic freedom and factorization allow us to consider the probe to

be interacting with one sub-particle.

DIS factorizes the scattering process into a short-distance (hard) interaction part

representing a perturbatively calculable (QED) scattering of point-like objects and a long

distance (soft or non-perturbative) QCD interaction part representing the non-elementary

(nucleon structure) response of the nucleon to the probe. In DIS the nucleon structure is

parametrized in terms of structure functions known as Parton Distribution

Functions(PDFs). PDFs are objects representing the longitudinal momentum and spin

distribution of partons in a fast moving nucleon. In this formalism, the assumption is that

the transverse momentum of the partons in the fast moving nucleon is negligibly small.

Two1 spin independent structure functions parametrize the total (unpolarized) cross

section in this regime [19]:

1 Note that the dimensionless structure functions F1 and F2 in Eq.( 1.12) are different from the elastic

Pauli and Dirac form factors in Eq.( 1.8)
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Figure 1.4: A cartoon illustrating deep inelastic scattering, ep → eX. An electron (k)

scatters off a proton (p) via the exchange of a virtual photon (q). The scattered electron (k’)

is detected and the recoil nucleon breaks up into many fragments (X) that are not detected.

W1(ν,Q2) =
∑

q

e2
q

q(x)

2M
≡ 1

M
F1(x)

W2(ν,Q2) =
∑

q

e2
qxq(x) ≡ F2(x),

(1.12)

where eq is the charge of the quark and q(x) is a parton distribution function which

gives the probability to hit a sub-particle q carrying momentum fraction x of the parent

nucleon. For both longitudinally polarized beam and target, the difference in the cross

section for opposite spin projections of the nucleon gives access to the polarized structure

functions g1 and g2:
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g1(x) =
1

2

∑

q

e2
q∆q(x),

g2(x) = q+(x) − q−(x),

(1.13)

where q± are spin dependent parton distribution functions. The unpolarized DIS cross

section can be expressed as [4]:

d2σ

dΩdν
=

α2

4E2 sin4
(
θe

2

) E′

E

{
W2 cos2

(
θe

2

)
+ 2W1 sin2

(
θe

2

)}

(1.14)

The structure functions are the matrix elements of the QCD density matrix corresponding

to the probability amplitude to find a quark at one point in space-time in a nucleon with

some momentum and placing it at a different space-time point but keeping the same

momentum. They (PDFs) are obtained as one-dimensional Fourier transforms in the

light-like coordinate y− (at zero values of the other coordinates) as [16]:

q(x) =
p+

4π

∫
dy−eixp+y−

〈
p|ψ̄q(0)γ+ψq(y)|p

〉
,

∆q(x) =
p+

4π

∫
dy−eixp+y−

〈
pS |||ψ̄q(0)γ+γ5ψq(y)|pS ||

〉
,

(1.15)

where p+ is a light-cone four momentum vector: given a vector pµ = (p0, p1, p2, p3),

its light-cone components are defined by p± = 1√
2
(p0 ± p3) and p⊥ = (p1, p2).2 S||

represents the longitudinal projection of the nucleon’s spin. It is often useful to define two

light-like vectors:

p1 =
Λ
√

2
(1, 0, 0, 1)

p2 =
1

Λ
√

2
(1, 0, 0,−1),

(1.16)

2 pµ is then written as pµ = (p+, p⊥, p−). The scalar product of two light-cone vectors is defined as:

v · w = v+w− + v−w+ − v⊥ · w⊥
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where Λ is a normalization parameter. The vectors p1, p2 satisfy the following

conditions: p2
1
= p2

2
= 0 and p1 · p2 = 1.

The DIS structure functions correspond to the forward limit of the optical theorem3

as illustrated in figure 1.5. These matrix elements are called “non-local” because two

different space-time points are involved in the process. The elements are also called

forward because unlike the elastic form factors, the nucleon does not change momentum

in the process. The DIS process is easily defined in a reference frame where the initial and

final and final nucleons are collinear along the z-axis (the infinite momentum or the

light-cone frame) [18].

Figure 1.5: The optical theorem connects the imaginary part of the forward scattering

amplitude of a process to the corresponding total cross section [18]. This figure was taken

from Ref. [16]. See re-use permission (3) in Appendix C.

The structure functions have been experimentally measured extensively for the

proton and some of the world data for F
p

2
are shown in Figs. 1.6 and 1.7. In the limit

3 The optical theorem relates the imaginary part of the forward scattering amplitude of the scattering

process to total cross section.
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where (Q2, ν) goes to infinity, the Bjorken regime, these structure functions cease to vary

with Q2, a property called scaling. In the Bjorken picture, scaling means quarks become

point-like objects at very short distances. The scaling property is, however, violated in

QCD by gluon radiation at low parton momentum fraction x, as Q2 increases [19].

Figure 1.6: The unpolarized proton structure function F2 data measured from different

facilities in the world at fixed values of x over a large Q2 range. The experimental

measurements are represented by the points and the horizontal line across all points

corresponding to a fixed x are fit by the CTEQ-Jefferson Lab Collaboration. This figure

was taken from Ref. [23]. See re-use permission (4) in Appendix C.
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Figure 1.7: Proton structure function F
p

2
from Hall C of Jefferson Lab with a fitting by the

JLab CJ15 group. This figure was taken from Ref. [23]. See re-use permission (4) in Appendix C.

Fits have been performed on the F2 structure function to extract parton distribution

functions (PDFs) over a wide range in x. At large x, the u and d valence quarks are seen to

dominate whilst the contribution from the sea is seen to take over at low x. This is

illustrated in Fig. 1.8 obtained from work done by the CTEQ-Jefferson Lab

Collaboration [23].
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Figure 1.8: Unpolarized parton distribution functions as a function of the Bjorken variable

(x) fitted for the different quark constituents of the proton. This figure was taken from

Ref. [23]. See re-use permission (4) in Appendix C.

Each of these two processes (DIS and elastic scattering) lacks information contained in

the other. The PDFs do not contain information about the spatial distribution of the

contents of the nucleon whilst the Form Factors do not carry any information concerning

the dynamics of the constituents. Therefore, none of them can provide a full picture of the

nucleon’s interior.
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1.3 Generalized Parton Distributions

1.3.1 The Wigner distribution and GPDs

The quantities measured in elastic scattering and DIS probe only the diagonal

elements of the QCD density matrix in position space and in momentum space,

respectively [25]. The off-diagonal elements are interesting in that they represent the

correlation between momentum and position space. A phase-space distribution which

allows the simultaneous access to knowledge of both position and momentum is easily

attainable for a classical system but not so easy to conceive for a quantum mechanical

ensemble because of the uncertainty principle. In spite of that, the first quantum

mechanical phase-space distribution was introduced by Wigner as early as 1932, the

Wigner distribution [26]. The Wigner distribution cannot however be treated as a genuine

joint probability for position and momentum because it is not always positive. The

patches of negative probability arise due to the interference of quantum phases. The

quantum-mechanical uncertainty principle restricts the amount of localization that the

Wigner distribution can have. This leads to a “fuzzy” phase-space description of a system

compared to the sharp determination of its position and momentum observables

separately [25]. The Wigner distribution has been adapted and used in different areas of

study such as in this case of nucleon structure. This is a function that provides a

five-dimensional (two position and three momentum) description of the nucleon. The

quantum definition of the Wigner quasi-probability is given by [25]:

W(r,p) =

∫ +∞

−∞

d3R

(2π~)3
e−ip·R/~ψ∗(r − 1

2
R)ψ(r +

1

2
R) (1.17)

The marginal projections of the Wigner distribution lead to its space and momentum

classical limits. This means the spatial distribution can be reached by simply integrating
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the Wigner distribution over the momentum variables. In a similar way, integrating the

Wigner distribution over the coordinate variables leads to the momentum distribution.

In field theory, an equivalent to the quantum Wigner distribution is obtained by

promoting the wave functions of quantum-mechanical states to field operators [25]. In the

light-cone frame, the virtual photon momentum qµ and the average momentum of the

nucleon Pµ are collinear along the z-axis. In this frame, the Wigner operator is defined by

[25, 77]:

ŴΓ(~b⊥,~k⊥, x) =
1

2

∫
dz−d2z⊥

(2π)3
ei·(xp+z−−~k⊥·~z⊥)ψ∗(y − z

2
)ΓLψ(y +

z

2
)

∣∣∣∣∣∣
z+=0

, (1.18)

with ~b⊥ as the parton position, ~k⊥ is the nucleon 4-momentum in the light-cone frame

and L is the Wilson line to ensure gauge invariance. The parameters z±, z⊥, and p± are

light-cone variables. The Wigner distributions for a field theoretical system are then

defined as the matrix element of the Wigner operator sandwiched between nucleon

states [77]:

WΓ(~b⊥,~k⊥, x) =

∫
d2∆⊥

(2π)2

〈
p′|ŴΓ(~b⊥,~k⊥, x)|p

〉
, (1.19)

with p and p′ being the initial and final nucleon momentum vector. Eq.( 1.19) is the

most general phase-space distribution and there is no known experiment that measures the

function [17]. The only way we know how to probe the single particle distributions is

through high-energy processes where the leading observables are associated with

components of quark (gluon) fields which can be selected by operators Γ = γ+, γ+γ5 or

σ+⊥ [17]. Using the connection between GPDs and helicity amplitudes and applying

parity constraints we get eight GPDs at leading order and twist [27]. Four GPDs

correspond to processes which do not flip the helicity of the quark (chiral-even GPDs):

Hq, Eq, Ẽq and H̃q. The other four correspond to processes which flip the helicity of the

quark (chiral-odd GPDs): H
q

T
, E

q

T
, Ẽ

q

T
and H̃

q

T
[27].
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Integrating the Wigner distributions over ~k⊥ yields generalized parton distributions.

Using the conventions of Goeke, Polyakov and Vanderhaegen [? ] we define the quark

GPDs by integrating equation 1.19:

∫
d2~k⊥

(2π)2
WΓ(~b⊥,~k⊥, x) =

~P+

2π

∫
dz−eixP+z−〈p′|ψ̄q(

−z

2
)Γψq(

z

2
)|p〉|z+=~z⊥=0

(1.20)

The right hand side of equation 1.3.1 can be interpreted as a Fourier integral along a

light-cone distance z− of a quark-quark correlation function [? ]. This represents the

process of taking a quark out of an incoming nucleon N(p) at a space-time point −z
2

and

restoring it back to the nucleon N(p’) at a space-time point z
2
. All this happens at equal

light-cone time (z+ = 0) and zero transverse separation between the quarks. Since this

process occurs at different points in space-time and the nucleon’s momentum is changed,

GPDs are called “non-local” and “no-forward”.

1.3.1.1 Chiral-even GPDs

Taking Γ = γ+ and γ+γ5 on the right hand side of equation 1.3.1, we get the helicity

conserving GPDs:

~P+

2π

∫
dz−eixP+z−〈p′|ψ̄q(

−z

2
)Γψq(

z

2
)|p〉|z+=~z⊥=0 =

1

4

{
(γ−)αβ

[
Hq(x, ξ, t)N̄(p′)γ+N(p) + Eq(x, ξ, t)N̄(p′)iσ+k ∆k

2MN

N(p)

]

+ (γ5γ
−)αβ

[
H̃q(x, ξ, t)N̄(p′)γ+γ5N(p) + Ẽq(x, ξ, t)N̄(p′)γ5

∆+

2MN

N(p)

]}
.

(1.21)

The right hand side of Eq.( 1.21) is a parametrization of the non-perturbative nucleon

structure in terms of GPD functions. In this case nucleon structure is encoded in four
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GPDs: H(x, ξ, t) and E(x, ξ, t) corresponding to Γ = γ+, Ẽ(x, ξ, t) and H̃(x, ξ, t)

corresponding to Γ = γ+γ5 [16, 17]. In this framework, x represents the longitudinal

momentum fraction of the nucleon carried by a quark. ξ represents the skewness

parameter for the longitudinal fraction of the momentum transfer to the nucleon (∆||). t

(= ∆2) is the squared 4-momentum transfer between the initial and the final nucleon,

∆ = p′ − p (= ∆|| + ∆⊥) in Fig. 1.11. Since t is not a longitudinal parameter like x and ξ, it

takes into account that there can also be a transverse component of the momentum

transfer [16]. As illustrated in equation 1.3.1, GPD functions are classified according to

whether they correspond to a vector operator (γ−)αβ or an axial-vector operator (γ−
5
)αβ for

the active quark. This can be seen in figure 1.9 where the initial and final helicities of both

the nucleon and the active quark are shown.

The four GPDs can be summarized as follows:

• H parametrizes a vector transition,

• E parametrizes a tensor transition,

• H̃ parametrizes an axial-vector transition and

• Ẽ parametrizes a pseudoscalar transition.

GPDs H and E correspond to averages over quark helicity (see figure 1.9) and are not

sensitive to the quark helicity and thus are called unpolarized GPDs. GPDs H̃ and Ẽ on

the other hand involve differences of quark helicities and are therefore quark helicity

sensitive and called polarized GPDs. Furthermore, GPDs H and H̃ conserve proton

helicity yet E and Ẽ do not. Overall, the four GPDs parametrize the four independent

helicity-spin combinations of the nucleon-quark system (conserving quark helicity) [16].
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Figure 1.9: Nucleon and active quark helicities corresponding to the four GPDs at leading

twist and order. This figure was taken from Ref. [16]. See re-use permission (3) in Appendix C.
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1.3.1.2 Transversity GPDs

Up to this point we have only discussed chiral-even quark GPDs at leading order and

twist. To complete the picture (at leading order and twist) we now turn to the chiral-odd

GPDs. Using the conventions of Diehl [27], chiral-odd GPDs are given by:

1

4π

∫
dz−eixP+z−〈p′|ψ̄q(

−z

2
)iσ+iψq(

z

2
)|p〉|z+=~z=0

=
1

2P+
N̄(p′)

[
H

q

T
(x, ξ, t)iσ+i + H̃

q

T
(x, ξ, t)

P+∆i − ∆+Pi

M2
N

+ E
q

T
(x, ξ, t)

γ+∆i − ∆+γi

2MN

+ Ẽ
q

T
(x, ξ, t)

γ+Pi − P+γi

MN

]
N(p),

(1.22)

with the introduction of the chirality flipping operator Γ = σ+⊥ instead of the

chiral-even operators γ+ and γ+γ5. The chiral-odd GPDs describe the transverse structure

of the nucleon and the nucleon tensor charge. They are generally referred to as

”transversity GPDs”. In the forward limit (limit where the momentum transfer to the

proton t→0) only GPD H
q

T
can be measured and in this limit it is equal to the transversity

distribution of the quarks, h1(x) [28]. h1(x) cannot be measured directly in inclusive DIS

because the quark coupling to the photon conserves chirality [27]. Easy access to

transversity functions is possible through exclusive electroproduction of neutral

pseudoscalar mesons (π0 mesons) as discussed in section 1.3.3.3.

1.3.1.3 Basic properties of GPDs

First moments and connection to the Form Factors

The Fourier transform of the GPDs with respect to the transverse component of the

momentum transfer, ∆⊥, is related to the transverse position b⊥ and the latter gives the

transverse spatial distribution of partons as a function of x. This enables GPDs to combine

the spatial information with the longitudinal momentum information to give a 3-D picture

of the interior of the nucleon. Since the GPDs unify a wealth of information, their
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moments in the momentum fraction x integrates out some kinematic dependencies and

bring us back to a 1-D representation of the nucleon’s interior. The first moments of the

GPDs simplify to the elastic form factors [17]:

∫ +1

−1

dxHq(x, ξ, t) = F
q

1
(t)

∫ +1

−1

dxEq(x, ξ, t) = F
q

2
(t) ∀ ξ

∫ +1

−1

dxH̃q(x, ξ, t) = g
q

A
(t)

∫ +1

−1

dxẼq(x, ξ, t) = h
q

A
(t) ∀ ξ,

(1.23)

where F
q

1
and F

q

2
are the electromagnetic Dirac and Pauli form factors, respectively.

g
q

A
is the axial form factor and hA is the pseudoscalar form factor. The relations in

Eq.( 1.23) are independent of ξ. This is a consequence of Lorentz invariance: integrating

the matrix elements of Eq.( 1.21) over x removes all reference to the particular light-cone

direction with respect to which ξ is defined, therefore the result is ξ independent [27].

Second moment and connection to quark orbital angular momentum

The second moment of the GPDs is related to the spin structure of the nucleon.

Understanding the partitioning of the nucleon’s spin according to its fundamental building

blocks has been a long unresolved and interesting topic in QCD and is now famously

known as “the spin puzzle”. An earlier and naive approach to understanding the source of

the nucleon’s spin assigned the sum of the spins of the valence quarks to add up to the

total spin of the nucleon but later experiments proved otherwise. According to a

gauge-invariant nucleon spin decomposition by Ji [26], the spin can be broken down into:

1

2
= J = Jq + Jg

(1.24)
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In equation 1.3.1.3, Jq is the contribution of the total angular momentum of quarks to

the nucleon spin and Jg is a similar contribution from the gluons. The quark contribution

can be decomposed further as:

Jq =
1

2
∆ Σ + Lq,

(1.25)

where 1
2
∆Σ is the quark intrinsic spin and Lq is the quark orbital angular momentum

contribution to the spin. The second moment of the GPDs, evaluated at zero momentum

transfer (t = 0), is then related to Jq via Ji’s sum rule [26]:

Jq =
1

2

∫ +1

−1

xdx
[
Hq(x, ξ, t = 0) + Eq(x, ξ, t = 0)

] ∀ ξ

=
1

2
∆Σq + Lq

(1.26)

The spin contribution (∆Σq) is measurable in DIS experiments and has been found to

contribute 20 to 30 % to the nucleon spin [26]. With ∆Σq measurable, this means

measuring the second moment of the GPDs can, via the sum rule, lead to the

determination of the quark orbital momentum contribution to the nucleon spin. However,

there is still a huge question on how to go about decomposing the total angular momentum

of the gluon (Jg) into the orbital angular momentum part Lg and the spin part ∆g in such a

way that both can be related to observables [26]. ∆g has been directly measured

experimentally and is consistent with zero even though it was extracted with large

uncertainty [26]. Regardless, equation 1.26 opens the door to pinning down the quark

orbital contribution to the nucleon’s spin and hence closing the quark’s case in the spin

puzzle. A lot of work has been done in the extraction of GPD H in proton targets but GPD
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E has not been extensively studied. With an active global GPD program it is both

promising and exciting that in the future we will have all the role players in equation 1.26

and close the quark case in the spin puzzle.

Forward limit and connections to the PDFs

In the forward limit (momentum transfer to the proton, t, goes to zero), the GPDs

reduce to the known parton distributions:

Hq(x, 0, 0) = q(x),

H̃q(x, 0, 0) = ∆q(x),

where q(x) and ∆q(x) are the unpolarized and polarized quark densities.

Relative to the chiral-even GPDs, little is known about the transversity GPDs yet.

They have been both experimentally and theoretically elusive in that they are difficult to

interpret. Their known constraint is the forward limit of HT :

HT (x, 0, 0) = δT q f (x), (1.28)

where δT q f (x) is the transversity distribution function. Chiral-odd GPDs promise to

be a rich avenue for describing some exclusive processes such a electroproduction of

neutral mesons as discussed in section 1.3.3.3.

Polynomiality condition

Finally, the polynomiality condition is the more general rule of the x moments of

GPDs. GPD polynomiality states that the xn moment of GPDs should be a polynomial in ξ

of order n or n+1 (if n is even or odd, respectively) [16]:

i f n is even :

∫ +1

−1

xndxH(x, ξ, t) = a0 + a2ξ
2 + a4ξ

4 + ... + anξ
n,

i f n is odd :

∫ +1

−1

xndxH(x, ξ, t) = a0 + a1ξ
2 + a4ξ

4 + ... + an+1ξ
n+1.

(1.29)
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The same rules apply for the other GPDs H̃, Ẽ and E. The polynomiality condition is

a consequence of time reversal invariance which dictates that H(x, ξ, t) = H(x,−ξ, t) [16].

Figure 1.10: Relationship between the Wigner distributions, GPDs, Form Factors and

Parton Distribution Functions. This figure was taken from Ref. [16]. See re-use permission

(3) in Appendix C.

1.3.2 Factorization and the Handbag Dominance

Factorization theorems enable us to apply calculations to many QCD processes, order

by order in a renormalizable perturbation series [29, 30]. At this point we recall the
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challenge of QCD, its Lagrangian is formulated in terms of quarks and gluons yet at low

energies in QCD (long distances) we encounter hadronic degrees of freedom. Therefore,

from the Lagrangian we are not able to compute and predict the long distance properties

of hadrons. However, at short distances, asymptotic freedom allows us to “see” one parton

at a time. Basically we can compute scattering off a single parton but our ability to do so

vanishes for a family (long distances in QCD) of partons. In an asymptotically free

configuration, we understand each constituent parton to be carrying a definite momentum

fraction x of the hadron. Therefore, an energetic electron probe in contact with the hadron

can also be understood as interacting with a parton of definite momentum instead of the

whole hadron. In the center of mass frame, the hadron is contracted in the direction of the

collision and its internal interactions are time dilated before and after the hard scattering

process and thus they can not interfere with the interaction of the active parton with the

electron probe [30]. Therefore, factorization enables us to treat electron-nucleon high

energy scattering processes as a product of two parts: a hard scattering part which is

perturbatively calculable in QED and the second part describes the response of the

hadronic system to the probe, the non-perturbative part, and in deep scattering processes,

this is described by the structure functions. The factorization proof for the DVCS process

is given by Collins and Freund [33].

A good demonstration of factorization is its application in DIS. In the Bjorken limit,

scaling is achieved and the electron probe can be understood to be elastically interacting

with one parton only. The DIS cross section can be thought of as a product of probabilities

which can be written as:

σDIS (x,Q2) =
∑

i

qi(x)σeq→eq(x,Q2), (1.30)
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where in Eq.( 1.30) the parton distribution functions qi(x) encode the

non-perturbative part of the interaction (the QCD part) and σeq→eq(x,Q2) represents the

perturbatively calculable QED part of the cross section.

In as much as a hadron has a sea of quarks and gluons, most of the hadron’s

momentum is shared among a small number of its constituents hence a probing particle

will only interact with one parton interaction. The probability of coherent scattering for a

system of n of partons is suppressed by the nth power of photon’s virtuality:

Pn ∼
( |δz⊥|2
πR − N2

)n

∼ 1

(Q2πR2
N

)n
, (1.31)

where πR − N2 is the transverse area of the nucleon and z is the distance of the probe

from the nucleon (determined by the probe virtuality Q2). Therefore, at leading order, we

have one photon scattering off cleanly from a single parton and according to the

factorization theorem this is known as the handbag approximation. The handbag

approximation for DVCS is illustrated by the cartoon in Figure 1.11. A quark absorbs a

photon at time t0 and as a results accelerates. It then re-emits a photon at a later time t’>t0

and merges with the parent nucleon. The short distance and time structure of the process

is accessible in the Bjorken limit (Q2 −→ ∞ or rather high virtualities) at a fixed Bjorken

variable xB =
Q2

2~p·~q . The handbag approximation predicts that the electroproduction process

will be dominated by longitudinally polarized photons and only quark helicity conserving

GPDs participate in parametrizing the nucleon’s soft structure at leading order and

twist [33].
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Figure 1.11: The “handbag” diagram for DVCS. The momentum four-vectors of the

incident and scattered electron are e and e’, respectively. The momentum four-vectors

of the virtual (incident) and real (scattered) photon are represented by γ∗ and γ. t is the

invariant momentum transfer to the nucleon which has initial and final momentum four-

vectors p and p’. ξ is the longitudinal momentum fraction transferred to the nucleon and x

is the longitudinal momentum fraction carried by a struck parton. The functions H, H̃, E

and Ẽ are GPDs factorizing the strong interactions in DES, as explained in the text. This

figure was taken from [16]. See re-use permission (3) in Appendix C.

1.3.3 Accessing GPDs via Deep Exclusive Processes

1.3.3.1 Deeply Virtual Compton Scattering

Electroproduction of a photon can occur through two processes. The Bethe-Heitler

(BH) is a process where the photon is emitted along one of the electron lines, before or

after the interaction vertex, as shown in figure 1.12. This process is completely calculable

if one knows the nucleon form factors. The photon can also be emitted by the nucleon
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(from this point on, the nucleon under study is specifically a proton) and this is the DVCS

process. The five-fold differential cross section is given by [4]:

dσep→epγ

dQ2dxBdφedtdφ
=

α3xBy

16π2Q2

√
1 + 4x2

B
M2/Q2

∣∣∣∣∣
T
e3

∣∣∣∣∣
2

(1.32)

Figure 1.12: Mechanisms that can lead to electroproduction of a real photon,the DVCS

and the Bethe-Heitler processes illustrated in the diagrams. This figure was taken from

Ref.[16]. See re-use permission (3) in Appendix C.

Besides the photon virtuality Q2 and the momentum transfer t, the cross section also

depends on the DIS scaling (Bjorken) variable xB = Q2/(2Mpν), where ν = E − E′ is the

electron energy transfer. It also depends on the fraction of the electron energy lost in the

nucleon rest frame, y = ν
E

, the electron azimuthal angle with respect to the horizontal

plane, around the beam-line direction, φe, the angle between the leptonic plane and the

hadronic plane, φ, as shown in figure 1.13.
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Figure 1.13: Description of reference frames for the DVCS reaction, according to the

Trento convention. This figure was taken from Ref. [16]. See re-use permission (3) in Appendix

C.

Since the DVCS amplitude interferes with the BH amplitude, see figure 1.12, this

results in a total amplitude, T , which is a superposition of the BH and DVCS amplitudes:

|T |2 = |TDVCS|2 + |TBH |2 + I

I = T †DVCSTBH + T
†
BHTDVCS

(1.33)

where TBH and TDVCS are the BH and DVCS amplitudes respectively. I is the

interference between the BH and DVCS processes. The cross section is proportional to the

square of the amplitude, with the contribution from the DVCS process containing

information about the GPDs and the BH contribution encoding Form Factor information.

The terms contributing to the amplitude (TBH , TDVCS and I) can be expanded into finite

sums of Fourier harmonics, where different terms of the sum correspond to different twist
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levels (twist-two, twist-three, etc.). A calculation at a twist level in the perturbative

Feynman expansion of the amplitude can be defined as a suppression of each expansion

term by powers of 1
Q2 [4]. Up to twist-3, the terms in the cross section can be harmonically

expanded as [32]:

|TBH |2 =
e6

x2
B
y2(1 + ǫ2)2∆2P1(φ)P2(φ)

C
BH
0 +

2∑

n=1

CBH
n cos(nφ) + SBH

1 sin(φ)

 (1.34)

I = ±e6

xBy3∆2P1(φ)P2(φ)

C
I
0 +

3∑

n=1

[CIn cos(nφ) + SIn sin(nφ)]

 (1.35)

|TDVCS|2 =
e6

y2Q2

C
DVCS
0 +

2∑

n=1

[CDVCS
n cos(nφ) + SDVCS

n sin(nφ)]

 , (1.36)

where the (±) in the interference term represents a sign convention for negatively(-)

and positively(+) charged lepton probes. Furthermore, P1(φ) and P2(φ) are the

Bethe-Heitler electron propagators expressed as [31]:

Q2P1 = (k − q′)2 = Q2 + 2k∆, (1.37)

Q2P2 = (k − ∆)2 = −2k∆ + ∆2, (1.38)

with q’ and k representing the virtual photon and the incoming electron 4-vectors,

respectively. ∆ is the momentum transfer to the nucleon.

It is worth noting that even though the GPDs depend on three variables x, ξ and t,

only the last two variables (ξ and t) can be accessed by measuring the kinematics of the

scattered electron and the final state photon and proton [16]. The variable x is not

experimentally accessible as a result of the closed loop in the DVCS process. GPDs,

therefore, can not be measured directly in an experiment. Instead, Compton Form Factors
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(CFF), which depend on two variables, ξ and t can be measured [16]. The connection

between the experimental observables containing GPDs (that is to say, CFFs) and the

DVCS amplitude is carried by the coefficients of the expansion terms of the Fourier

harmonics (see equations 1.34, 1.35 and 1.36). The C’s are linear combinations of the

CFFs weighted by form factors, which are integrals of the GPDs.

Since the GPDs also encode nucleon helicity information, they can be toggled using

beam-target spin degrees of freedom. Thus the use of polarized beams and or targets

allows access to different linear combinations of GPDs, depending on the choice of

polarization configuration. In this case, one can either calculate the total (unpolarized)

cross section or a helicity correlated difference of cross sections. For polarized

experiments (either beam or target or both polarized), the difference of cross sections are

sensitive to BH-DVCS interference terms [16], giving a linear combination of the

electromagnetic Form Factors F1, F2 and the CFFs. In general, single spin observables

(either beam or target polarized, but not both) are sensitive to the imaginary part of the

CFFs while double spin observables (both beam and target polarized) are sensitive to real

part of the CFFs [16]. The total cross section is sensitive to the real part of the DVCS

amplitude whilst the cross section difference is sensitive to the interference of the Bethe

Heitler and the imaginary part, assuming a small DVCS term contribution:

d~σ − d~σ = 2 · TBH · Im(TDVCS) + [|T→DVCS|
2 − |T←DVCS|

2
]

d~σ + d~σ = |TBH |2 + 2 · TBH · Re(DVCS) + |TDVCS|2,
(1.39)

with the arrows representing a polarized beam.

It is also interesting to note that different targets give different access to the GPDs.

This is because different targets bring the possibility of accessing different reaction

channels which avail different combinations of GPDs. Furthermore, for the same target,

different target-beam spin orientations will give access to different linear combinations of
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the GPDs. In particular, the difference of polarized cross sections on a neutron target is

understood to access a linear combination of GPDs in which the GPD E dominates. Since

the GPD E is one of the arguments into Ji’s sum rule, this makes the neutron an interesting

laboratory for future DVCS experiments. Since free neutrons can not last the duration of

these experiments, a simple source of polarized neutrons would be useful. Due to its spin

structure, polarized 3He is the ideal source of free polarized neutrons and is promising to

be the focus for future DVCS experiments. My experiment, however, used an unpolarized

liquid hydrogen (proton) target.
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1.3.3.2 Hard Meson ElectroProduction

GPDs encode the structure of the nucleon regardless of the probe and the reaction

that is being used as a tool and technique of probing. As a consequence, GPDs are called

universal quantities and in addition to DVCS, they are also accessible through hard

electroproduction of mesons (Deeply Virtual Meson Production, aka DVMP). The

quantum numbers of the meson in the final state makes it possible to probe and separate

the contributions from different GPDs and allow for the flavor decomposition of the

underlying GPDs. As an example, Collins et al. [30] predicted that at leading order and

twist, longitudinally polarized vector meson channels (ρL, ωL and φL) are sensitive to the

unpolarized GPDs (H and E) only. On the other hand, pseudo-scalar meson

(π±, π0, η,K±,K0, etc) channels are sensitive to the polarized GPDs (H̃ and Ẽ). This makes

hard meson production a good tool to disentangle the different GPDs and is usually seen

as complimentary to DVCS. Table 1.1 gives examples of hard exclusive production

processes of mesons with their quantum numbers (JPC) on a proton target and the different

flavor decompositions accessible for each process. DVMP also provides an experimental

window to access transversity GPDs as illustrated in figure 1.14.

GPDs Meson (JPC) Flavor Sensitivity

π0(0−+) 2(u-ū) - (d-d̄)

HT , ET π+(0−−) (u-ū) + (d-d̄)

η(0−+) 2(u-ū) -(d-d̄) +2(s-s̄)

Table 1.1: Examples of hard exclusive production of mesons with their quantum numbers

(JPC) on a proton target and the different flavor decompositions accessible for each process.
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Figure 1.14: A leading twist and order diagram of the electroproduction of a π0 meson. As

opposed to the DVCS reaction, the hard part has the pion distribution amplitude (DA) which

is a non-perturbative object. The objects HT , H̃T , ET and ẼT are called transversity GPDs.

They are chiral-odd GPDs appearing at next to leading order (twist-3) when considering

the transverse momentum of the quark entering the meson with respect to the mesons

momentum. For this kind of reaction, factorization has been proven for longitudinally

polarized virtual photons only [30].

The possibilities availed by DVMP come at an experimental and theoretical price.

Unlike in DVCS, the hard part in meson production has a soft or rather strongly

interacting system in the form of the meson in the final state, see figure 1.14. This

introduces the need for a different factorization scheme for the perturbative expansion of

the meson production amplitude. Hitherto, a factorization theorem has only been derived

for longitudinally polarized photons. Derivation of a factorization theorem requires a
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demonstration that the theory does not have Ultra-Violet (UV) divergences. In the case of

the longitudinal photons, the main source of UV divergences has been the contribution (to

the amplitude) from soft quark exchanges, the so called end points. It has been

demonstrated by Collin et al. [30] that for longitudinally polarized photons, the end point

contribution terms are suppressed by a factor of 1
Q2 . At large Q2 this power suppression is

deemed sufficient to obtain a factorization theorem. It has, however, not been

experimentally or otherwise determined what the exact lower Q2 limit is for the

factorization to hold. In the case of transversely polarized photons, it is also demonstrated

by Collin et al. [30] that the amplitude is suppressed by one power of Q ( 1
Q

).

The factorization proof for DVMP is given by Collins-Frankfurt-Strikman [29] and

they have predicted that in the handbag approximation the cross section is dominated by

longitudinally polarized photons (σL). The contribution from transversely polarized

photons (σT ) is understood to be suppressed by a factor of 1
Q2 relative to the longitudinal

contribution to the cross section. In general, according to the handbag approximation σL

is expected to scale as 1
Q6 whilst σT scales as 1

Q8 .

The differential cross section for exclusive meson electroproduction for a

longitudinally polarized beam and unpolarized target is given by [35]:

d4σ

dtdφdQ2dxB

=
1

2π
Γγ∗(Q

2, xB, E)

[
dσT

dt
+ ǫ∗

dσL

dt
+

√
2ǫ∗(1 + ǫ∗)

dσT L

dt
cos(φ)

+ ǫ∗
dσTT

dt
cos(2φ) + h

√
2ǫ∗(1 − ǫ∗)dσT L′

dt
sin(φ)

]
,

(1.40)

where Γγ∗(Q
2, xB, E) = α

8π

Q2

M2k2

1−xB

xB

1
1−ǫ is the virtual photon flux, ǫ∗ =

1−y− Q2

2k2

1−y+
y2

2
+

Q2

4k2

is the

virtual photon flux’s degree of polarization, h (=±1) is the helicity of the lepton probe, the

electron in our case, k and k’ are the initial and scattered electron energy.



67

1.3.3.3 Hard Electroproduction of Pseudoscalar Mesons

According to the handbag formalism the electroproduction process is expected to be

dominated by longitudinally polarized virtual photons. The longitudinal amplitude for

pseudoscalar mesons involves the chiral-even GPDs H̃ and Ẽ [27]. At leading order the

pion hard electroproduction amplitude is [? ]:

ML = −ie
4

9

1

Q

[ ∫ 1

0

dx
Φπ(x)

x

]
1

2
(4παs) ·

{
AπN N̄(p′)nγsN(p) + BπN N̄(p′)γs

∆ · n
2mN

N(p)

}
,

(1.41)

where:

αs is the strong coupling constant,

Aπ0 p =

∫ +1

−1

dx

(
euH̃u − edH̃d

){
1

x − ξ + iǫ
+

1

x + ξ − iǫ

}
, (1.42)

Bπ0 p =

∫ +1

−1

dx
1
√

2

(
euẼu − edẼd

){
1

x − ξ + iǫ
+

1

x + ξ − iǫ

}
(1.43)

and Φπ(x) is the chiral-even (twist-2) pion distribution amplitude (DA), a

non-perturbative object which encodes the meson structure.

Using data for the π0 → γγ transition form factor, Φ(x) has been found to take the

form [? ]:

Φπ(x) =
√

2 fπ6x(1 − x), (1.44)

fπ = 0.0924 GeV from π0 weak decay.

At this point we recall the ultimate goal of nucleon structure study: to parametrize

the non-perturbative structure of nucleons (or hadrons in general) in terms of GPD
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functions. The handbag formalism gives us eight GPDs for nucleon soft structure

parametrization at leading order and twist: four chiral-even and four chiral-odd. The first

goal of nucleon structure experiments is to test the validity of the handbag formalism in

parametrizing nucleon structure. In order to test the relevance of the handbag formalism

we have to confirm that the predicted dominance of the longitudinal cross section (over

the transverse cross section) can be experimentally observed. As predicted for

electroproduction at high Q2, the handbag approximation is in agreement with

experimental data for photoproduction [10, 34] and for vector meson production [36]. In

the case of pseudoscalar meson production, models based on the handbag formalism are

found to under predict the data by an order of magnitude for π+ [37]. This implies that the

data are not in the region of asymptotic freedom where the handbag formalism applies.

A more stringent test of the handbag formalism validity is the Q2-dependence of the

separated longitudinal and transverse meson cross section terms. In the regime where the

handbag formalism applies, σT is predicted to scale as Q−8, σL is expected to scale as Q−6

and σL ≫ σT . Separated cross section terms for π+ data from JLab’s Hall C show that the

data is not in the regime where the handbag formalism holds [36, 38]. As shown in the left

panel of figure 1.15, σT is completely off and does not scale as predicted at low Q2 and

small t whilst σL does. Even though σL does scale as predicted and is found to be larger

than σT at small t, this is consistent with σL being boosted by a dominant meson pole in

this region [36] and such cannot be interpreted as the handbag dominance. Going to

higher Q2 and t (right panel of figure 1.15) we see σT dominating over σL, consistent with

a vanishing pion pole. A larger σT (than σL) is also another indication that the handbag

formalism is insufficient in this experimental regime. Concerning the scaling at high Q2,

σL continues to scale as predicted but σT still does not scale according to predictions. It is

however worth noting that the high Q2 plot has only two data points and σT might scale

well.
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Figure 1.15: Longitudinal and transverse π+ electroproduction cross sections for fixed

momentum transfer t and longitudinal momentum fraction xB. Solid lines show a A

Q6 fit

to σL and the dashed lines represent a B

Q8 fit to σT . This figure was taken from Ref. [36].

See re-use permission (6) in Appendix C.

1.3.3.4 Pseudoscalar Mesons, Twist-3 DA and Transversity GPDs

The discrepancy between experimental data and the handbag approximation suggests

a strong participation of transversely polarized photons in the pseudoscalar meson

electroproduction channels at leading order in pQCD. This has inspired models assuming
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a transverse factorization and the proposition that for pseudoscalar meson production, the

chiral-odd meson DA appearing at twist-3 couples with tranversity GPDs [39, 40].

Chiral-odd DAs arise at twist-3 when considering the transverse momentum of the quark

(with respect to the meson’s momentum) entering the meson. Even though the twist-3

pion wave function should be kinematically suppressed compared to the twist-2

amplitude, it comes with a transverse response term which is boosted by the mass factor

µπ =
µ2
π

mu+md
(mu and md are the bare masses for the up and down quarks) which increases

the meson production cross section [36]. Including transversity GPDs in the models has

been able to describe the π+ HERMES [41] cross sections and the interference terms of

the π0 JLab CLAS data [37]. Figure 1.16 shows the CLAS data being well described by

the transversity models of Goloskokov and Kroll [39] and Goldstein et al. [40].

The transversity GPDs can be accessed only if we can isolate the transverse from the

longitudinal contributions to the cross section. The participating GPDs in meson

production for transverse photons are HT , characterizing quark distributions involved in

nucleon helicity flip processes, and ĒT (= 2H̃T + ET ), characterizing quark distributions

involved in nucleon non-helicity flip processes [37]. In their model, Goldstein et al. [40]

have found the following relation and a way of accessing the transversity GPDs HT , H̃T

and ET from measuring σT and σTT :

dσT

dt
=

4πα

2k′
µ2
π

Q8

[
(1 − ξ)

∣∣∣〈HT

〉∣∣∣2 − t′

8m2

∣∣∣〈2H̃T + ET

〉∣∣∣2
]
,

dσTT

dt
=

4πα

2k′
µ2
π

Q8

t′

16m2

∣∣∣〈2H̃T + ET

〉∣∣∣2,
(1.45)

where in this case k’ prime is the phase space factor;

k′ =
16π

Q2

( 1

xB

− 1
) √

(W2 − m2) + Q4 + 2W2Q2 + 2Q2m2 (1.46)
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Figure 1.16: σTT and σLT interference terms of the π0 CLAS [37] cross section compared

to transversity GPD models by Goloskokov and Kroll [39] (solid curves) and Goldstein et

al. [40] (dashed curves). Black symbols represent the σT + ǫσL, blue symbols represent

σTT and the red are representive of σLT . This figure was taken from Ref. [36]. See re-use

permission (6) in Appendix C.
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1.3.4 Existing Exclusive Hard Electroproduction Measurements

1.3.4.1 Pseudoscalar Meson Production Experiments

The first JLab π0 electroproduction measurements were published by the Hall A

collaboration [42]. In 2014, the CLAS collaboration [43] published the results of the

measurement of π0 electroproduction using a wider CLAS kinematic coverage shown in

figure 1.18. Both the HALL A and CLAS results do not have the longitudinal and

transverse components of the cross section separated but strongly contradict the handbag

approximation. These results show a large transverse-transverse interference term in the

π0 production cross section implying that in this experimental regime transversely

polarized photons play a significant role in the transition at leading order and twist.

The most recent results on pion production are shown in Figure 1.17 and were

published by the JLab Hall A collaboration presenting a Rosenbluth separation of the

cross section at xB = 0.36 and Q2 (1.5, 1.75 and 2) GeV2 [11]. Even though the σL term of

the cross section is found to be consistent with zero, the interference cross section term,

σLT is non-zero. This implies a non-negligible σL contribution. Also, σT is found to be

much larger than σL, in contrast to the asymptotic prediction of the handbag factorization.

Other results which support the presence of a significant σLT interference come from

beam spin asymmetries measurements with Hall B’s CLAS detector [12] where a

non-zero beam spin asymmetry, indicating an L-T interference, was observed. Recent

results from COMPASS [13] (see figure 1.20) using a muon beam to produce neutral pions

also show a large transverse-transverse (σTT ) and a small σLT contribution to the cross

section. In all these results the handbag approximation fails and this is a strong suggestion

of the participation of transversely polarized photons and the helicity flip GPDs at leading
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order for π0 (in general pseudoscalar meson) leptoproduction. Transversely polarized

photons invite transversity GPDs and are predicted to start contributing at next to leading

order. These results have contradicted the handbag approximation and instead they have

made lepton production of π0 mesons a good hunting ground for the transversity GPDs.

Up until now, the range of applicability of the handbag formalism in DVMP is still in

question. Instead pseudoscalar mesons (in particular π0) electroproduction has been

identified by Goldstein et al. [44], Goloskokov and Kroll [39] as sensitive to the helicity

flip processes and hence the chiral-odd GPDs, at leading order in the handbag formalism.

π+ electroproduction is another channel sensitive to helicity flip GPDs but its disadvantage

is the presence of a dominant pion-pole term which makes the interpretation of the data

complicated [37]. The pion-pole is absent in π0 electroproduction.

Using the advantage of the 12 GeV upgrade, experiment E12-06-114 (of this thesis)

is the first JLab experiment to measure π0 cross sections over a wider kinematic range in

Q2 (from 3 to 9 GeV2) and more points in xB (from 0.36 to 0.6). This thesis will, however,

focus on data at xB = 0.36 taken at three different points in Q2: 3.2, 3.6 and 4.47 GeV2.

We present in this document the cross section measured at the first Q2 point, 3.2 GeV2.

Even though this data doesnot offer a complete separation of the longitudinal (σL) and

transverse (σT ) contributions to the cross section, the unseparated cross section

(σU = σT + ǫσL) is a good observable to test against the predictions by handbag

approximation models. In addition to the unseparated cross section, the data offers

interference terms σLT (longitudinal-transverse interference) and σTT

(transverse-transverse interference). These interference terms offer additional

experimental observables to be compared against handbag and transversity models.
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1.3.4.2 DVCS Experiments

Since the last decade, DVCS cross sections have been measured and are still planned

to be measured in two distinct kinematic regimes: the quark-gluon sea, at low xB, and the

valence region at higher xB, as shown in figure 1.21.

The HERA collider performed of the pioneer DVCS experiments. At HERA, the H1

and ZEUS collaborations operated with 27.5 GeV positrons and 820 GeV protons at

center of mass energy 30< W <130 GeV and 8< Q2 < 85 GeV2 [47]. They measured the

unpolarized cross section of the ep→ epγ process. At such high energies (low xB) the

DVCS process is sensitive to the quark-gluon sea, hence gluon GPDs. HERA had the

capability to use both electrons and positrons as a probe enabling the H1 collaboration to

measure a variety of beam spin asymetries.

The HERMES experiments at HERA used an electron beam as well as a positron

beam to measure DVCS beam spin asymmetries on fixed gaseous targets (hydrogen and

deuterium). Longitudinally and transversely polarized target asymmetries, beam-charge

asymmetries and all associated beam-spin/target-spin/beam-charge double

asymmetries [48]. The HERMES Q2 range was from 1 GeV2 to 6 GeV2 and xB in the

range 0.04 to 0.2. The average momentum transfer was 〈−t〉 = 0.27 GeV2, using a 27.5

GeV positron/electron beam. For the first measurements exclusivity was implemented by

a missing mass cut on the recoil nucleon. DVCS asymmetries and moments results from

the HERMES data were found to be in agreement with the handbag formalism [16]. This

agreement even though in a small band in Q2, is a strong sign of the dominance of the

handbag diagram over higher twists in the case of DVCS. For the last two running years of

HERA, a recoil detector was installed to improve the selection of DVCS events by direct

measurement of the recoil protons [48].
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The CEBAF Large Acceptance Spetrometer (CLAS) collaboration in Hall B of JLab

also measured electron beam spin asymmetries off a fixed hydrogen target covering

kinematics in the Q2 range 1 to 4.8 GeV2, xB range 0.1 to 0.6 using a 6 GeV polarized

electron beam. A 20 to 30 % asymmetry was observed. The asymmetries indicate a sin φ

behavior as expected from the handbag formalism. This result suggests sensitivity to the

handbag description of the DVCS process and an indication that the GPD formalism

might be a valid description of nucleon structure. Unpolarized and beam-polarized cross

sections have recently been published by CLAS [10] increasing our confidence in the

knowledge of the GPD H. The latest CLAS results also support the models predicting an

increasing proton size at lower Bjorken momentum fraction.

The JLab Hall A collaboration measured both unpolarized and the difference of

polarized cross sections with W≈2 GeV, using a polarized electron beam on a fixed proton

target. Four-fold beam-polarized and unpolarized cross sections were measured,

d4σ
dxBdtdφdQ2 [9], see figure 1.22. Measurements were done at four values of momentu

transfer to the proton −t: 0.17,0.23, 0.28 and 0.33 GeV2 for kinematics 〈xB〉 = 0.36 and

〈Q2〉 = 2.3 GeV2. In addition, beam polarized cross sections were measured at 〈Q2〉 = 1.5

GeV2 and 〈Q2〉 = 1.9 GeV2. These data have made a contribution to provide constraints in

extracting the real and imaginary parts of the GPD H [19]. Early conclusions show that

the valence quarks (high x) seem to remain at the center of the nucleon while the sea and

gluons (low x) can extend towards the ”surface” of the nucleon. CFFs have also been

extracted from this data, indicating early scaling properties.

The first Hall A DVCS results have shown early signs of validation of the GPD

formalism and the handbag picture of DVCS but are limited to a narrow kinematic region,

small Q2 (less than or equal to 2.3 GeV2) and xB (less than or equal to 0.36). The
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experiment on which this thesis is based explored a wider range in both Q2 and xB, thus

testing the precision with which the handbag amplitude dominates (or does not) over

higher twist amplitudes. This was made possible by the new (and wide, xB up to 0.6 and

Q2 up to 9 GeV2) kinematic region availed by the 12 GeV era at JLab.

Future DVCS experiments in Hall B and Hall C will also explore previously

non-explored regions. At CERN, COMPASS is set up to study DVCS at the sea quark and

gluon regime (at very low xB). An Electron Ion Collider proposal is still in circulation and

should it materialize, it will offer possibilities to measure kinematics which can not be

reached using fixed targets. The EIC will be fundamental in measuring DVCS observables

at low x and probe gluon GPDs. All these efforts will contribute to constrain existing GPD

models even further and extracting with confidence, nucleon information in the GPD

formalism.
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Figure 1.17: Hall A Rosenbluth results: dσT (full circles), dσL (open circles), dσT L

(triangles), and dσTT (squares) as a function of momentum transfer tmin for Q2=1.5 (left),

1.75 (center), and 2GeV2 (right) at xBB=0.36 [11]. Solid lines are predictions by Ref. [39]

and long dashed lines from Ref. [40]. The short-dashed lines are predictions from the VGG

model [45]. This figure was taken from Ref. [11]. See re-use permission (7) in Appendix C.
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Figure 1.18: The extracted structure functions as a function of momentum transfer to the

proton, t. The black (solid circles) represent dσU

dt
=

dσT

dt
+

ǫdσL

dt
, the blue (triangles) represent

dσTT

dt
; and the red (squares) dσLT

dt
. The curves (of the corresponding color) are model

predictions of these cross section responses. Solid curves are from model prediction by

Goloskokov and Kroll [39] and the dashed lines are predictions by Goldstein, Gonzalez-

Hernandez and Liuti [28]. This figure was taken from Ref. [43]. See re-use permission (7) in

Appendix C.
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Figure 1.19: CLAS result for the π0 photoproduction beam spin asymmetries (BSA) as a

function of the angle between the lepton and the hadronic planes, φ [12]. The black dashed

curve is a fit with A(φ) ≈ α sin φ and the red curve is a prediction by the JML model [49]

based on Reggeion exchange and hadronic degrees of freedom. This figure was taken from

Ref. [12]. See re-use permission (8) in Appendix C.
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Figure 1.20: COMPASS result for the π0 muon production cross section as a function of

the angle between the lepton and the hadronic planes, φ. The red dots show the measured

cross section for each bin in φ. A binned maximum likelihood fit was used to extract the

amplitude of the modulations and the result is shown by the red curve. This figure was

taken from Ref. [13]. See re-use permission (8) in Appendix C.
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Figure 1.21: The kinematic domain, Q2 as a function of xB for past (H1, ZEUS, HERMES,

TJNAF at 6 GeV) and future (COMPASS, TJNAF at 12 GeV) DVCS measurements. This

figure was taken from Ref. [46].
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Figure 1.22: DVCS Hall A results: Helicity dependent cross section (top panel) and helicity

independent cross section (bottom panel) shown as a function of the azimuthal angle φ.

These are the first (2004) DVCS results from Hall A of JLab and they proved the feasibility

of such (DVCS) experiments in Hall A kinematics. This figure was taken from Ref. [9].

See re-use permission (5) in Appendix C.
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Figure 1.23: DVCS Hall A results: Compton Form Factors (CFF) extracted from the 2004

DVCS experiment in Hall A. In the limited Q2 coverage of the 2004 experiment, the CFF’s

show some early signs of scaling. This figure was taken from Ref. [9]. See re-use permission

(5) in Appendix C.
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2 The E12-06-114 Experiment

Experiment E12-06-114 is the third generation DVCS experiment in Hall A of JLab.

The first experiment was conducted in 2004 and it was a pioneer experiment. The second

generation was conducted in 2010. The first experiments confirmed the feasibility of

DVCS experiments in JLab (in particular Hall A) kinematics and they showed hints of the

validity of the GPD formalism in parametrizing proton structure in the case of

electrophoton production. The E12-06-114 experiment utilized the same apparatus as the

earlier generations, with an expanded calorimeter since the second (2010) generation.

However, this experiment was done with a recently upgraded electron beam energy (from

6 GeV to 12 GeV). A higher and wider energy range is necessary to further test the

validity of the GPDs as the appropriate functions to parametrize proton structure in the

deep inelastic region. This experiment received the highest scientific rating by the JLab

Program Advisory Committee (PAC) and was one of the first experiments to take place

after the 12 GeV upgrade.

In this chapter, we introduce the experimental set-up, beginning with the experiment

detail, the accelerator facility and then the hall which housed the experiment.

2.1 Experiment overview

As briefly mentioned in the introduction, experiment E12-06-114 is a third

generation of DVCS experiment in Hall A. The first experiment, E00-110 was a pioneer

experiment that used exclusive electron scattering to measure helicity-dependent and

helicity-independent cross sections for the DVCS (ep→ epγ) process off a proton target.

This experiment was conducted in Hall A of the Thomas Jefferson National Accelerator

Facility (TJNAF, aka JLab). The experiment was conducted at a fixed xB of 0.36 and a

narrow Q2 range between 1.5 to 2.3 GeV2. Conducted with a maximum beam energy of

5.5 GeV, this meant the experiment was limited in the kinematic ranges of xB and Q2 it
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could cover. However, even with these limitations, the experiment was successful in

demonstrating the feasibility of measuring GPDs at kinematics possible at JLab. This

experiment also endorsed the methodology employed to measure GPDs and motivated

other similar experiments at JLab.

The most recent experiment, E12-06-114, used the same technique as E00-110 but

this time with a newly upgraded facility offering higher beam energies than before and

without a proton detector. Longitudinally polarized electron beams of 6.6, 8.8, and 11

GeV 4 were fired to scatter off a 15 cm liquid hydrogen target. The scattered electrons

were counted using the left arm of Hall A’s High Resolution Spectrometer. The produced

DVCS photon was registered using a 39 cm by 48 cm Lead-Fluoride (PbF2)

electromagnetic calorimeter. The recoil proton was not detected but a missing mass

reconstruction of the DVCS reaction was used to distinguish DVCS events. With the 12

GeV upgrade, the experiment had a wider Q2 coverage ranging from 3 to 9 GeV2. In

addition, a Q2 scan was performed at different values of xB, i.e, 0.36, 0.48 and 0.6. The

experimental set-up is shown by the cartoon in figure 2.1 and the kinematic coverage of

the experiment is shown in table 2.1.

The experiment ran from the Fall of 2014 to the Fall of 2016. A total of 50 PAC days

were initially approved for the experiment. This means that assuming a 100% efficiency

of the accelerator facility, we were supposed to run for 50 days. However, being the first

experiment after the 12 GeV upgrade, we found that the accelerator had a relatively low

efficiency. This meant that we had to spend more time running than it had been planned

(about 130 days instead of 50). The low efficiency also came with the misfortune of not

covering all kinematic settings as planned. For example, we ended up not having time to

4 These are nominal energies
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Figure 2.1: A cartoon showing the experimental set-up of E12-06-114 in Hall A of JLab.

collect data for two kinematics at xB of 0.6. Also, in some kinematics we collected lower

statistics than projected. This was even complicated by the changing beam energies (per

pass) for different run schedule periods. The drifting beam energies made it impossible to

go back to an old experimental kinematic setting and fill for the low statistics at a later

period. Figure 2.2 shows predictions of the VGG GPD model [45] for the proton structure

functions. The imaginary part of CI
0

in equation 1.35 is shown as a function of Q2 for the

different points of xB that were taken. The Q2 dependence of the structure function (and

other structure functions in general) is known as scaling behaviour. The results from the

model predict a scaling for this structure function, thus validating the GPD handbag

formalism for the electroproduction of photons (DVCS) over the wide arm in Q2 shown in

the figure. Once complete analysis of the acquired E12-06-114 is complete, it will be

interesting to see how much the data agrees with this conjecture by the VGG model. In the

case of neutral meson (π0) electroproduction, existing data has so far contradicted the
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xB Name DAQ period Q2 Ebeam Escattered Ephoton DAQ rate

GeV2 GeV GeV GeV Hz

0.36 kin36 1 Fall 2014 3.2 7.35 1.925 5.06 120

kin36 2 Fall 2016 3.6 8.52 2.92 5.83 220

kin36 3 Fall 2016 4.47 10.62 3.99 6.9 635

0.48 kin48 1 Spring 2016 2.7 4.48 1.49 2.83 216

kin48 2 Spring 2016 4.37 8.84 3.99 4.66 180

kin48 3 Spring 2016 5.33 8.84 2.92 5.74 200

kin48 4 Spring 2016 6.9 11.02 3.36 7.47 90

0.6 kin60 1 Fall 2016 5.54 8.52 3.92 4.57 84

kin60 3 Fall 2016 8.4 10.62 3.9 6.75 70

Table 2.1: Experiment E12-06-114 kinematic coverage. Also shown in the table are the

dates around which data acquisition was done for each kinematic.

handbag formalism. The understanding is that the data is not yet in the regime where the

handbag formalism applies for pseudoscalar mesons. As an experiment which extended

the kinematic arm in Q2, E12-06-114 results will provide further tests of the handbag

formalism in pseudoscalar meson production.

Experiment Goals

The principal goal of the experiment was to measure precise helicity-dependent and

helicity-independent cross section of the DVCS process, which is related to the CFFs.

This was performed at fixed kinematic points xB over a large range in Q2. The measured

absolute cross sections will be useful in revealing many properties about the proton

system, such as:
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• Scaling tests of DVCS cross sections. Earlier DVCS experiments confirmed the

scaling property but over a narrow range in Q2(between 1.4 and 2.4 GeV2 [16]).

Experiment E12-06-114 tests the scaling property for a Q2 range between 3 and 9

GeV2. Passing this test will prove that the GPD formalism is appropriate to describe

nucleon structure.

• To separately measure the Real and Imaginary parts of the DVCS amplitude. The

angular harmonics which are sums of CFFs (and FFs) enable access to the Real and

Imaginary parts of different combinations of CFFs and FFs. Therefore, a precise

measurement of cross section will lead to improved knowledge of Real and

Imaginary amplitudes of the DVCS and BH process.

• The 12 GeV upgrade also came with the advantage of a large kinematic coverage in

Q2, xB and t. A wide kinematic range is necessary to map out the proton at many

points and provide data that will be useful in extracting GPD parametrizations. Such

measurements are likely to improve current GPD models and eventually reduce the

model dependence of the GPD parametrizations.

• Measurement of e~p→ epπ0 cross section. This tests the factorization dominance of

neutral meson (in general pseudoscalar mesons) electro-production. Up to this

point, existing data is not yet in the regime of factorization dominance. The

extended kinematics associated with this experiment are an important search for the

point beyond which factorization holds or else prove the participation of transversity

GPDs at leading order for pseudoscalar mesons.

Exclusivity of the DVCS reaction

An exclusive experiment is one in which all particles in the final state are detected

and DVCS is in this subset of experiments. The DVCS process is a three body final state
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Figure 2.2: DVCS scaling in Hall A of JLab. The Q2 domain possible with the 6 GeV beam

is shown in gray and the kinematic coverage of the 12 GeV beam is shown in black. Also

shown are the kinematic variable (xB) points at which the Q2 scan was performed. This

figure was taken from [16]. See re-use permission (3) in Appendix C.

channel. The photon was detected by the DVCS calorimeter, the electron by the

spectrometer, and the recoil proton was not detected. Instead, exclusivity of the DVCS

process was ensured by the H(e,e’γ)X missing mass (M2
X) technique. The missing mass

technique entails using momentum conservation to reconstruct the energy (missing mass)

of the undetected particle. The missing mass peak (in the missing mass distribution) is

called the exclusivity peak because it is the one which completes the requirements for

exclusivity in our case. There are also other competing reactions that make the DVCS not

easy to identify. The main competing channels are:

• π0 production (ep→ e′p′π0). The π0 decays into two photons and is easier to

identify if the decay is symmetrical (see figure 2.3) and both photons are detected by
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the calorimeter. In an asymmetrical π0 decay, one of the decay photons will be more

energetic than the other [4] and will look more like a DVCS photon. The missing

mass can not tell the difference between this and the DVCS process. However, in the

case of π0 production this not a problem because we are indeed looking for pions.

• associated DVCS (non-resonant) [4] (ep→ e′Nγπ). An additional pion is produced

and the lower its momentum is, the closer the missing mass of this reaction gets to

the DVCS one.

• associated DVCS (resonant) [4] (ep→ e′(∆orN∗)γ). Here, the resonance decays

into a pion and a nucleon. Since the first resonance is the ∆(1232), it means the

minimum missing mass squared for this process is about 1.5 GeV2.

Figure 2.3: A demonstration of two different kinds of π0 decays. When the π0 decays with

both photons emitted perpendicular to the direction of the boost in the π0 center of mass,

the decay is symmetric (top panel) otherwise (bottom panel) it is asymmetric.
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The M2
X technique is based on using the information from the spectrometer and the

calorimeter to compute the missing mass squared of the recoil proton as follows:

M2
ep−>e′γX = (k + p − k′ − q)2, (2.1)

where k, p, k’ and q are the 4-momentum vectors of the incident electron, the target

proton, the scattered electron and the real photon, respectively. In the case of π0

production, q is the 4-momentum vector of the pion reconstructed from the two photons

detected by the calorimeter. An example of the missing mass spectrum is shown in

figure 2.4. To ensure exclusivity, a cut is then applied in the missing mass as shown in the

figure. Since the proton does not break up in the process, M2
X should ideally be the mass of

the proton (0.88 GeV2). In reality, M2
X is on average 0.88 GeV2 and is dominated by the

energy resolution of the calorimeter.

2.2 The Continuous Electron Beam Accelerator Facility(CEBAF)

The CEBAF at the TJNAF produces polarized electron beams and recently (in 2014)

got an upgrade from a 6 GeV maximum beam energy to 12 GeV, after circulating the

beam five times. The accelerator has two superconducting linacs, North and South,

connected by arcs with steering magnets to guide the electron beam from one linac to the

other. CEBAF is designed to supply a continuous instead of a pulsed beam. This is made

possible by the use of superconducting radio frequency (SRF) technology which uses

liquid helium to cool Niobium cavities to about 2 Kelvin (niobium has a 9 K

superconduction transition point) [51]. At this temperature, the cavities have a relatively

low electrical resistance (power load), leading to a very efficient electron acceleration.

To extract electrons, a gallium arsenide doped with phosphorus (GaAsP) cathode

source is secured in a vacuum chamber and hit with a laser [52] in a process called optical
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Figure 2.4: ep→ epX missing mass squared. The peak (at 0.88 GeV2) is the recoil proton

mass squared and its width is dominated by the energy resolution of the calorimeter. The

black spectrum is the missing mass plot of all electron-photon coincidence events. The

green spectrum represents accidental electron-photon coincidences (background) and the

blue plot represents a contamination by π0 events which have only one photon detected.

Subtracting the accidentals and the π0 contamination results in the red plot. This figure was

taken from [50].

pumping. This propels valence electrons of the GaAsP to fill the conduction band

resulting in photoemission. Beam polarization is achieved by polarizing the laser (photon

beam) used for optical pumping. The choice of the polarization of the laser dictates the

polarization of the electron beam also. To polarize the laser, it is passed through a voltage

controlled wave plate, which polarizes the photons circularly [52]. Changing the sign of

the voltage applied to the wave plate switches the direction of polarization(±). A

maximum of 88% beam polarization has been achieved [56].
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The extracted electrons are swept from the cathode surface using a potential

difference and are accelerated up to 45 MeV before being injected into the North linac as

demonstrated in figure 2.5. After the 12 GeV upgrade, the electron beam can be

accelerated to 1.1 GeV maximum energy in one linac. At the end of the first linac, the

beam is steered into the South linac where it is again accelerated. This makes one pass.

The beam can now be extracted to experimental halls or can be recirculated for a second

pass, up to a maximum of 5 passes.

In addition to the original experimental halls A, B and C, a new experimental hall

(hall D) has been constructed with the 12 GeV upgrade. This hall (hall D) is located in

such a way that it receives beam that has been accelerated through one more linac than the

beam to the other halls. As a result of the 12 GeV upgrade, halls A, B, and C will receive

a maximum of 11 GeV while hall D has half a pass more beam circulation and will

receive the maximum 12 GeV. All the halls can receive beams of different energies and

currents simultaneously. This is made possible by radio frequency separators and magnets

that split and steer the beam into the different halls. The maximum beam current the

CEBAF accelerator can provide is 180 µA [53].

Why is CEBAF the ideal facility for this experiment?

There are many high energy accelerators in the world, all of which have made

significant contributions to the field and are still in operation. However, CEBAF outshines

them as the ideal facility for experiment E12-06-114 because of the following reasons:

• CEBAF has a high duty factor. The duty factor is defined as the ratio of the duration

of a pulse (pulse width) to the time between consecutive pulses. In other words, the

duty factor tells how much continuous (high duty factor) or pulsed (low duty factor)

an electron beam is. To accelerate high energy electrons, enormous currents are

needed to generate the necessary electric fields. Since most accelerators do not have
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Figure 2.5: CEBAF with the 12 GeV upgrade. The injector is represented by the green box

close to hall A and it is viewed by the North linac. The beam is injected into the North

linac and passed to the South linac for a complete pass. The two linacs initially had 20

cyromodules each. With the 12 GeV upgrade, 5 cryomodules have been added to each

linac and a new hall D has been installed in addition to the already existing halls A,B and

C.

the technology to support large currents for an extended period of time, the common

way to circumvent this is to operate the machine for short time intervals to allow for

cooling between the pulses and inherently having a low duty factor. With the

superconducting radio frequency cavity technology, CEBAF beats this obstacle and

is able to supply a high current over an extended time period. A high duty factor

(close to unity) is necessary for a coincidence experiment like E12-06-114 where

we detect the scattered electron in coincidence with a photon.
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A high duty factor accelerator delivers its electrons evenly spread over time so that

few are at the target area at the same time. This helps to suppress, identify and

separate the number of accidental coincidences. This is in contrast with low duty

factor machines where a large pulse (many incident electrons) is sent onto the target

within a narrow time interval. This will consequently result in a huge number of

interactions at or around the same time and many detectors may not have the

necessary time resolution to distinguish accidentals from true coincidences. An

illustration of the effect of the duty factor on the suppression of accidental events is

demonstrated in figure 2.6.

• CEBAF has a very high electron polarization of about 88% maximum.

• CEBAF has a high current supply and this connects to a high luminosity of

∼ 1037cm−2 s−1 in experimental Hall A. With the 12 GeV upgrade, the facility also

has a high enough beam energy to meet the kinematic coverage projected for the

experiment.

2.3 Experimental Hall A

The layout of the hall is shown in figure. 2.7 and it consists of several components

dedicated to the transport, control and measurement of the properties of the electron beam

before and after scattering off a target. The hall also has dedicated detectors to measure

the products of experimental reactions.
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Figure 2.6: An illustration (by F. Gross [54]) of the duty factor for an accelerator and its

impact on the level of contamination by from accidental coincidences. This figure was

taken from Ref. [54]. See re-use permission (1) in Appendix C.

2.3.1 The beamline

The beamline instrumentation has equipment dedicated to the transportation of the

electron beam before and after the target whilst measuring the applicable properties of the

beam at the same time. Special attention is paid to the control and measurement of the

beam energy, current, position, direction, size and polarization. In each of these and other

cases, two or more independent techniques or devices are employed to provide confidence

in absolute measurements and also for redundancy, just in case one device fails.
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Figure 2.7: A schematic showing the layout inside JLab’s Hall A. The green and yellow

structure on the left represents the left arm of the High Resolution Spectrometer (HRS).

The blue and cyan structure on the right represents the right arm (RHRS). The yellow

structure where the two arms seem to meet is the target chamber. The yellow line that runs

straight represents the beamline running from the beam entrance to the hall (bottom left

corner). Between the beam entrance and the target chamber, there is a series of beamline

instruments (BPMs,BCMs, polarimeters, etc.) used to transport and measure properties of

the beam as discussed in the text.

In the following subsections, we will briefly talk about the beamline components that

were applicable to experiment E12-06-114.
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2.3.1.1 Beam polarimetry

To measure the polarization of the beam, the hall has two independent polarimeters:

the Compton and the Møller polarimeters. The principles of operation for both

polarimeters are based on QED processes, hence the asymmetries they detect (in order to

measure the polarization) can be computed from first principles.

The Compton was however not available during part of the data taking periods

because of poor laser alignment issues. During that time, the Møller polarimeter was the

only technique available for polarimetry. It is for this reason that I will discuss the Møller

polarimetry only in this section.

Møller polarimeter: The Møller polarimeter is based on the principle of Møller

scattering of a polarized beam of electrons off polarized atomic electrons in a

ferromagnetic foil. The foil acts as a target of polarized atomic electrons. Two different

methods can be used to magnetize the ferromagnetic target. One technique is called the

”low field” method and uses a weak magnetic field of about 20 mT [55] to magnetize a

ferromagnetic target tilted at a small angle to the beam. The foil can also be tilted at

different angles in the horizontal plane making the target polarization to have both

longitudinal and transverse components. This method has a polarization precision of ∼

1.7% [55]. The other method is called the ”high field” technique and here the target is

placed perpendicular to the beam and polarized perpendicular to its plane using a strong

magnetic field of about 3 T [55]. The high field method has a better precision of ∼ 0.9%.

The low field method was used for the data taken in the Fall of 2014 only and this is

because by then the equipment had not been optimized for the 11 GeV upgrade [55]. The

rest of the measurements were done using the high field technique.
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Figure 2.8: A schematic of the Møller polarimeter. (a) shows the side view and (b) shows

the top view.

The Møller scattering cross section depends on both the beam and target polarization.

Møller scattered electrons are detected using a dedicated magnetic spectrometer (shown in

figure 2.8) that has a sequence of three quadrupole magnets and a dipole. The detector is

equipped with lead-glass calorimeter modules that are split in to two arms to detect a

coincidence of two scattered electrons. The beam polarization is determined from the

helicity-driven asymmetry of the coincidence counting rate. A summary of the Møller

measurements and polarization results is shown in table 2.2. An average 86% beam

polarization was measured.
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One disadvantage about the Møller is that it is invasive. This is because the scattering

of an electron off a thick (greater than 1µm) heavy atom (iron) target is smeared and

results in a change of the effective polarization of the electron. Therefore, the

measurement can not be conducted in parallel with normal production running.

Polarization measurements were usually arranged at regular intervals, especially after we

sanctioned a change in the beam energy.

Date Ebeam Polarization Stat. Error Sys. Error Technique

mm-dd-yyyy GeV % % %

12-08-2014 7.375 +84.58 ±0.25 ±2.2 low field

02-17-2016 4.477 +86.68 ±0.10 ±1.0 high field

02-29-2016 8.837 +86.95 ±0.20 ±1.0 high field

03-31-2016 10.985 +86.79 ±0.14 ±1.0 high field

04-19-2016 10.982 +88.19 ±0.13 ±1.0 high field

10-31-2016 8.495 +86.75 ±0.10 ±1.0 high field

11-28-2016 10.590 +85.39 ±0.11 ±1.0 high field

12-07-2016 10.591 +84.18 ±0.10 ±1.0 high field

12-19-2016 8.498 +86.20 ±0.10 ±1.0 high field

Table 2.2: A summary of the Møller measurements for experiment E12-06-114 [56].

2.3.1.2 Beam position monitors

The hall is equipped with Beam Position Monitors (BPMs) to determine the position

and direction of the beam at the target. The are two BPMs upstream of the target, one

7.524 m and the other 1.286 m from the target. Each BPM has a set of four antennas
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set-up around the beam so that the beam induces a current in each of them. The relative

position of the beam with respect to the antennas is found by comparing the intensity in

each antenna. The absolute position is found by calibrating the BPMs against wire

scanners called superharps located next to each BPM. Using the BPMs, the beam position

and angle can be determined to within 140 µm and 30 µrad, respectively [52].

Also located upstream is a raster system which is used to spread the beam out. The

beam can be rastered by several millimetres, usually 4 mm × 4 mm for cryogenic targets,

both in the x and y directions perpendicular to the beam direction.

2.3.1.3 Beam current monitors

The hall is also equipped with Beam Current Monitors (BCMs) to determine the

current or charge sent onto the target. The BCMs are located upstream the target, between

the polarimeters and they are designed to provide a stable, low noise and non-destructive

beam current measurement. BCMs consist of two RF cavities and an Unser monitor. The

Unser monitor is a Parametric Current Transformer which provides an absolute

reference [52]. It is calibrated by passing a known current through a wire inside the beam

pipe. However, the pedestal of the output signal of the Unser monitor drifts significantly

in minutes and thus it can only be useful for calibration purposes, not for monitoring the

beam current over extended periods.

To determine the current, the two resonant RF cavities on either side of the Unser

Monitor are tuned to the frequency of the beam. In this way, the resulting voltage output

from the cavities is proportional to the beam current. The constant of proportionality and

the relevant offset is determined from a dedicated BCM calibration done against the Unser.

2.3.1.4 Beam energy measurement

The Arc method was used to measure the beam energy. The Arc method uses the

deflection of the beam in the magnetic field of the arc between the accelerator and the hall
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to measure the absolute energy. During this measurement, the beam is tuned in dispersive

mode and eight dipoles are used to steer it in the arc. The integral of the magnetic field of

the eight dipoles employed to bend the beam is measured using Nuclear Magnetic

Resonance technique. The bending angle is also measured using the BPMs. The

momentum (p) of the beam is then related to the magnetic field integral if the eight

dipoles and the bend angle by (to leading order):

p = k

∫
~B · ~dl

θ
, (2.2)

where k = 0.299792 GeV rad. T−1 m−1c−1 [57]. The precision in the energy measurement

is δE
E
= 10−4 [57]. Results of the beam energy measurements done by D.

Higinbotham [57] are summarized in table 2.3.

Date No. of passes Emeasured in Hall A Ecalculated from accelerator settings

mm-dd-yyyy GeV GeV

10-17-2016 1 2.222 2.218

10-26-2016 3 6.427 6.407

12-20-2016 4 8.520 8.497

12-01-2016 5 10.587 10.589

Table 2.3: A summary of the Hall A beam energy measurements for experiment E12-06-

114 [57].

2.3.2 The target system

There is a scattering chamber which houses the various targets in use and this

chamber is kept under vacuum during production. The chamber is made of a 1cm thick
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cylindrical shell of aluminium. A 500 µm thick exit window made out of kapton is

installed (in place aluminium) towards the entrance of the spectrometers. The window

provides a path of a smaller radiation length (compared to aluminium) to minimize energy

lost by the scattered particles as they exit the target chamber. Inside the scattering

chamber, there is a target ladder on which the cryogenic and other (solid) targets are

mounted. The target ladder has target control and motion sub-systems installed inside the

chamber.

The cryogenic target

Together with its cooling, gas handling, pressure and temperature monitoring

sub-systems, the cryogenic target system is mounted inside the scattering chamber. The

cryogenic target had one loop filled with liquid hydrogen (LH2). The target cell is a 15 cm

long cylindrical with a diameter of 63.5 mm. The side-walls of the aluminium container

are 178 µm while entrance and exit windows are 71 µm and 102 µm thick, respectively.

The upstream window consists of a ring holder that has a 19 mm inner radius designed to

be large enough for the beam to pass through. Under normal operating conditions, the

LH2 target density is approximately 0.0723g/cm3 at an average pressure of approximately

0.17 MPa and temperature of 19 Kelvin. The target coolant is helium supplied by the End

Station Refrigeration (ESR). To minimize warming the target and increasing its density

fluctuations due to the small size of the beam spot (∼ 100 µm) being too focused, the

beam is rastered on the target. Beam rastering is a requirement for all currents above 5 µA

on the target. The cryogenic target can take up to 130 µA of rastered beam current,

equivalent to 700 W of power deposited.

Besides the cryogenic target, there are also solid targets:

• Carbon: a 1mm thick sheet of carbon used for optics studies.
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• BeO: is used to locate the beam spot at the target using a camera installed in the

scattering chamber. It is very useful when getting beam for the first time in a long

while.

• Optics: a set of 1mm thick carbon sheets used for optics calibration of spectrometer.

This target had 5 carbon sheets in 2014 and it was modified to 7 sheets in 2016.

• Dummy target: Aluminium foils used to study target wall effects. The dummy

target cell is designed exactly as that of the cryogenic target in length and cell

thickness. The only difference is that it is not filled with anything inside.

• Raster target: a 10 cm long cylindrical hollow tube made of aluminium walls. The

raster target is used for beam centering, especially to check if the beam is not

coming at angle relative to the x-z place. Well centered beam coming at no angle

will pass through the tube without scrapping the walls of the target.

• Empty: no target but a good position to place the target while beam is still being

driven into the hall.

2.3.3 The High Resolution Spectrometers (HRS)

The equipment of central importance in Hall A are two identical High Resolution

Spectrometers (HRS) used to detect scattered particles, for example, electrons. The two

spectrometers are abbreviated LHRS and RHRS for the left and right, respectively. Each

spectrometer is made up of a detector package following three superconducting

quadrupole magnets and one dipole magnet. The magnet configuration is shown in

figure 2.9 and is known as the QQDQ configuration [52]. The quadrupoles are used to

focus scattered charged particles as they are transported to the detectors in the hut. The

dipole uses the bending of a charged particle in a magnetic field to determine its

momentum. The spectrometers have a maximum central momentum 4.3 GeV. In the
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momentum range of 0.8 to 4.0 GeV, both spectrometers have a nominal precision of

δP
P
≈ 2 · 10−4 and angular (horizontal) resolution better than 2 milliradians. The transverse

position resolution is approximately 1 mm, for both spectrometers. Only the LHRS was

used for experiment E12-06-114 and its detector package will be discussed here.

Figure 2.9: Cross section view of the HRS showing the magnet set-up (Q1Q2DQ1

arrangement) for each spectrometer. This figure was taken from Ref. [52]. See re-use

permission (10) in Appendix C.

The Q1 Magnet Status

The core components of the spectrometer are its superconducting magnets because

they are responsible for transporting particles from the target area and focusing them in

the focal plane where there is the detector stack. There are four magnets: three



106

quadrupoles and a dipole in a Q1, Q2, D and Q3 configuration. All these magnets were

superconducting (before Fall 2016) and cooled using helium from the ESR.

Of these magnets, Q1 was malfunctioning and its power supply could not support

currents to reach a central momentum setting beyond 3.2 GeV, meaning the magnet could

not reach its full operating capability. Since the momentum setting of the spectrometer

depends on all the magnets, this limitation in Q1 compromised the momentum acceptance

of the whole spectrometer from the original 4.3 GeV to 3.2 GeV for the maximum central

momentum. In the Fall of 2014, this was not a problem because the kinematic point we

did was below the 3.2 GeV limit, see table 2.1 (the momentum setting of the spectrometer

is given by the column showing the scattered electron energy). However, in the Spring of

2016, some of our kinematics required a momentum setting beyond the Q1 limitation. To

go around this issue, Q1 was set at a lower current than required to support the necessary

magnetic field for a momentum setting above 3.2 GeV. Setting a lower current is called

detuning the magnet and it compromises the magnetic field and hence the bending of

particles in the field compared to the other properly functioning magnets. Moreover, for

each detune setting, a new calibration is required for the optics transportation matrix of the

spectrometer.

In the Fall of 2016, the superconducting Q1 was replaced by a water cooled Short

Orbit Spectrometer (SOS) quadrupole which had formerly been used in Hall C. However,

studies by E. Christy [58] showed that the quadrupole was saturated for all our kinematic

settings in Fall 2016. This is demonstrated in figure 2.10 where the set momentum is

plotted against the relative field per unit momentum. In the non-saturated region, the ratio

of the relative field is constant with the set momentum. However, beyond 2.75 GeV, the

ratio drops. Unfortunately, all of our kinematics in Fall 2014 were above 2.75 GeV.

The LHRS Detector Package
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Figure 2.10: Saturation of the SOS Q1 used for the Fall 2016 kinematics [58]. Saturation

started beyond 2.75 GeV where the ratio of the relative field per unit momentum drops

below one. In a non-saturated field, the ratio should stay constant.

A cartoon of the detector package is shown in figure 2.11, for the left arm. There is a

similar set-up for the right arm, with slight differences in the design of the component

detectors. The detector stack is discussed below:

Vertical Drift Chambers: Each detector package is equipped with a pair of vertical

drift chambers (VDC), a detector used to provide charged particle tracking by measuring

the position and angle of the trajectory. Each VDC chamber has two wire planes (called U
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Figure 2.11: Cross section view of the HRS detector package. The arrow shows the nominal

particle trajectory through the detector stack.

(lower) and V (upper)) separated by 335 mm. Each plane has a total of 368 wires, spaced

4.28 mm apart [52, 59]. The spectrometer momentum resolution depends directly on how

well the position and the angle of the particle can be measured. The VDCs have a position

resolution σx(y) ≈ 100µm and angular resolution σθ(φ) ≈ 0.5 milliradians [52, 59].

S2m scintillator: S2m is an array of 16 overlapping scintillator paddles each of 5

mm thickness. The scintillator material is BICRON plastic [60]. Each paddle has its

scintillation magnified and read out by two PMTS in a left and right configuration. In

coincidence with the gas Cherenkov (to be discussed below), the S2m was used to form

the trigger signal to start data acquisition (DAQ) for the DVCS data. This detector was

also used in coincidence with the S0 to study the efficiency of the gas Cherenkov.
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Gas Cherenkov: This is a 150 cm long box filled with carbon-dioxide at

atmospheric pressure and is used for particle identification. The gas Cherenkov detector is

mounted between the S0 and the S2m and it provides particle identification by producing

Cherenkov light [52]. The Cherenkov allows electron identification with an efficiency

above 99% and has a pion suppression threshold of 4.8 GeV [52]. It has ten spherical

mirrors to focus Cherenkov light. Each of the mirrors is viewed by a PMT. The final

signal from the Cherenkov is given by the sum of the ten PMTs. The threshold to accept a

Cherenkov signal was set at 15 mV and this was too low to suppress noise. A higher

threshold was used to clean the signal during analysis. During the experiment, the

Cherenkov formed the trigger in coincidence with the S2m as mentioned above.

Pion rejectors: Particle identification is also provided by a set of two

electromagnetic calorimeters (shower detectors). The pion rejectors are a set of two layers

each of 34 Lead (Pb) glass blocks. These are mounted after the S2m and are made of lead

glass blocks to induce showers of pair production and bremsstrahlung radiation for a total

collection of electron energy, while discriminating pions. Together with the gas

Cherenkov detectors, the showers provide, on average, above 98% and a suppression

factor of 2 · 105 for a pion of momentum above 2 GeV [52].

S0 scintillator: The S0 is one scintillator paddle made of BICRON plastic and it is

mounted just before the gas Cherenkov. This detector was used in coincidence with the

S2m to form a trigger during elastic calibration of the DVCS electromagnetic calorimeter

(see chapter 3). Since the spectrometer was detecting elastic protons during the

calibration, only the scintillators were ideal for the detection. Being massive, the proton

can not surpass the speed of light in the carbon-dioxide medium and hence the Cherenkov

was not useful. Also, protons are minimum ionizing and deposit less energy (a small

signal) in the pion rejectors. The S0 was also used in coincidence with S2m (gas

Cherenkov) to form a trigger to study the efficiency of the gas Cherenkov (S2m).
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2.3.4 The Electromagnetic calorimeter

The DVCS electromagnetic calorimeter is not part of the hall A standard equipment

but part of the DVCS set-up to detect the real photons in the final state of the DVCS

reaction. It is made of 13 × 16 lead-fluoride (PbF2) blocks each measuring 3 × 3 × 18.6

cm3. The front face of the calorimeter with the blocks stacked is shown in figure 2.12. The

calorimeter uses the electromagnetic shower principle to degrade the initial photon into

secondary positron-electron pair showers. The secondaries then produce Cherenkov light

which is collected by photo-multiplier tubes. Each PbF2 block is viewed by one PMT.

Properties of PbF2 include:

• A large density (7.7 g/cm3) making the detector very compact, hence a short

radiation length (0.95 cm).

• Moliére radius of 2.22 cm providing approximately total energy absorption within 9

calorimeter blocks [4].

• Very fast rise time, total pulse width < 20 ns (se figure 2.14).

• Reasonable secondary photon yield, Monte-Carlo simulations estimate 1000

Cherenkov photons per 1 GeV [4] and hence sufficient energy resolution,

σE

E
≈ 5.3√

(E(GeV)
[61]

The DVCS calorimeter is a central part of this thesis and a more detailed attention is

paid to it in chapter 3.
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Figure 2.12: The front face of the DVCS calorimeter showing the 208 PbF2 blocks already

stacked.

2.4 Data Acquisition

2.4.1 Standard Hall A Data Acquisition

The data acquisition process used the Cebaf Online Data Acquisition (CODA)

system developed by the Jefferson Lab Data Acquisition Group [52]. The system consists

of several data processing crates, each with a number of modules, all coordinated by

CODA. Examples of hardware coordinated by CODA include VME digitization crates,

front-end Fastbus crates, ethernet networks and a number of Unix computers. An example
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of how a CODA configuration works is shown in figure 2.13. Once the electronics

modules have processed and recorded the signal, it is sent to the VME crates where there

are CPUs running a CODA program called Read Out Controller (ROC) to read data out

the VME crates [60]. An Event Builder (EB) collects data from all the applicable ROCs

and the Event Recorder (ER) handles recording onto the disks. CODA supports all these

and allows users to set experimental configurations such as choosing detectors that will

form a trigger or triggers (in the case of multiple triggers) and the pre-scale factors for

each trigger.

Figure 2.13: Schematic of a CODA configuration [60].

The DVCS experiment used the coincidence of a scattered electron and a photon to

trigger data acquisition. The scattered electrons were measured using the LHRS which

used a coincidence of the S2m and the gas Cherenkov sum to form an electron trigger.
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2.4.2 Dedicated DVCS DAQ

2.4.2.1 The Analog Ring Sampler

Hall A has a high luminosity (1037 s−1 cm−2) and some kinematic settings which will

require the calorimeter to be at small angles and close to the target resulting in very high

event rates (see table 2.1). Such high rates are associated with large pile-up events (like

the ones shown in figure 2.14) which would make the ordinary ADCs not reliable in terms

of time and energy resolution. For better rejection of pile-up events and better time and

energy resolution, an Analog Ring Sampler chip was designed. The ARS is a system of an

array of 128 capacitor cells which continuously sample the signal at 1GHz [4]. Once

sampling is completed, the signal is stored in capacitors, digitized and ready to be sent as

a valid photon signal to trigger data acquisition. Once a trigger is issued, the capacitor

array is read out, cleared and the previous 128 samples are stored.

The ARS produces huge amounts of data, for instance, at a coincidence rate of 50 Hz,

a data rate of 2 Mbytes/s is produced [4]. This requires a large amount of time (128 µs) to

be read out. Therefore, reading out all triggered events for the ARS would induce a large

dead time for data acquisition. In order to avoid this problem by recording only interesting

events, a special trigger module was designed for the experiment.

2.4.2.2 DVCS trigger module

The DVCS trigger module was a level 25 type of trigger. The first level trigger was a

coincidence between the S2m and the gas Cherenkov. As mentioned earlier, the DVCS

calorimeter was close to the beamline and target which were main sources of noise.

5 A trigger is a system that uses a programmed criteria to decide (select) which events in a detector should

be recorded. Triggers are usually designed in levels. A level 1 trigger selects data that becomes an input to a

level 2 trigger. In this experiment, the HRS trigger is the level 1 and the DVCS trigger acts secondary to it.
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Figure 2.14: An example of ARS signals recorded in a 128 ns window. The ARS take a

snapshot of the signals every nano-second and provide a good time and energy resolution

for subtracting pile-up events like the one shown in this figure. This figure was taken from

Ref.[4].

Therefore, a lot of time was invested in reading the ARS because proper selection of

photons is important. To make the DVCS trigger, once the HRS has an electron event, all

the ARS were stopped but not read [4]. An integration based on a 2 × 2 block ”tower” of

the pedestal subtracted ADC signals was done for all possible combinations of the

calorimeter PMTs. It takes the trigger 340 ns to search for possible 2 × 2 block towers. An
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above threshold6 tower indicates a DVCS photon in the calorimeter and the ARS were

readout, leading to a final DVCS trigger sent to record the event. The amount of time it

took to make the decision to save (or not to save) an event is 800 ns. A schematic of the

DVCS trigger logic is shown in figure 2.15. The trigger could be set on single detector

mode and trigger on one specific detector. The trigger was also designed such that it was

able to bypass the cluster finding algorithm in what is called the auto validation mode.

The auto validation mode was employed especially to acquire deep inelastic (DIS) data.

The trigger module also supported multiple simultaneous triggers in different modes of

auto validation and with different pre-scale factors. A typical DAQ trigger setting would

have atleast 3 simultaneous triggers: the standard DVCS non-auto validated trigger

formed by the S2m and Cherenkov prescaled by 1 (taking every seen event), a DIS trigger

formed by an auto validated S2m and Cherenkov prescaled atleast by 2 (taking one out of

2 seen events) depending on the kinematic and an auto validated clock trigger prescaled

by 16384.

6 The threshold for the DAQ was set at the beginning of the run. Setting the threshold is a compromise

between the expected photon energy in that kinematic and the DAQ rate which is proportional to the dead

time.
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Figure 2.15: The logic for the dedicated DVCS trigger.

Figure 2.16: Calorimeter showing block numbers and the size of the ADC signal in each

channel. Most channels show the pedestal, which is about 60 ADC channels. The right

panel shows the case where once cluster has been found and the left is an example of a two

cluster (likely a pion) event.
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3 Calorimeter Data Analysis and Calibration

The DVCS calorimeter is used to detect the photon (photons) in the final state of the

DVCS (DVMP) process. During the experiment the kinematic settings were such that the

calorimeter was placed very close to the target and the beamline. Both the target and the

beamline are major sources of background radiation in the experimental hall. The accurate

analysis of the data is central to the success of the experiment and a proper analysis of the

calorimeter data is essential.

The calorimeter data analysis is performed in two steps. The first step is the analysis

of the recorded ARS waveforms to extract time and energy information. This is achieved

by comparing the signal in each calorimeter channel to a block specific reference shape.

This step is called waveform analysis. The waveform analysis algorithm was developed

by C. Munoz-Camacho [4] for the first DVCS experiment in 2004. It was later used to

analyze data from the second (2010) experiment and has been optimized for the analysis

of experiment E12-06-114. In this chapter the waveform analysis procedure has been

classified under “General Analysis Algorithms” and will be extensively discussed in

section 3.1.1. In addition to its general description, the optimization of the waveform

analysis algorithm will be discussed. As briefly mentioned above, central to waveform

analysis are the reference shapes for each calorimeter channel. The reference shapes were

extracted and updated for each period of data acquisition (Fall 2014, Spring 2016 and Fall

2016). Monitoring the stability of reference shapes for all channels, extracting and

updating them was part of my responsibilities for experiment E12-06-114. A detailed

discussion of reference shapes will be presented in section 3.2.1.

The second step of calorimeter data analysis is to integrate the information across all

calorimeter blocks to get centers of energy deposition, their position and eventually the

total energy deposited. This step is called clustering. Clustering is important because it

selects the areas of the calorimeter that had a significant energy deposition and also
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assigns each calorimeter block to the corresponding electromagnetic shower in the

calorimeter. The clustering algorithm was also developed by C. Munoz-Camacho [4] for

the 2004 data. It has been used for analysis of the 2010 data and was also used for

experiment E12-06-114. The clustering algorithm is therefore part of the “General

Analysis Algorithms” and will be discussed in detail in section 3.1.2.

A very important aspect in the interpretation of the calorimeter data (and the whole

experiment) is calibration of the calorimeter. Calibration is necessary to convert the signal

amplitudes obtained from waveform analysis into units of energy. Several elastic

calibrations were performed for each data acquisition period and I analyzed all the

calibration data and eventually produced calibration coefficients to convert signal

amplitude to units of energy for each calorimeter channel. A detailed discussion of the

calibration tools, procedure, and results is presented in section 3.4.2. In addition to

extraction of calibration coefficients, elastic data is useful in studying energy and angular

(position) resolution of the calorimeter. Calorimeter resolution was studied for all elastic

data collected and the procedure and results are also discussed and presented in

section 3.4.2.

3.1 General Analysis Algorithms

3.1.1 Waveform analysis

As briefly mentioned in the introduction, the waveform analysis is necessary to

extract the amplitude and arrival time of a signal for each channel of the calorimeter. To

achieve this, each signal is fitted against a channel specific reference shape. The basis of

the waveform analysis algorithm is the assumption that the signal shape is independent of

its amplitude [4]. The waveform analysis also uses the fact that the signal off a PMT is

linear and each pulse can be related to another pulse from the same PMT by a scaling
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factor. Based on these assumptions, all signals can be expressed as a scaled translation (in

a time window) of a reference shape.

In an ideal situation (no noise), for a signal with a known arrival time t = 0, the

amplitude would be one which minimizes the functional:

χ2 =

127∑

i=0

(xi − ahi)
2, (3.1)

xi is the signal, a is the amplitude and h is the reference shape. The subscript i runs

through the 128 ns of the ARS time window (see chapter 2), comparing the signal to the

reference shape in steps of one nanosecond. However, the signal time is unknown and the

functional in (3.1) has a time dependence:

χ2(t) =

127∑

i=0

(xi − a(t)hi−t)
2 (3.2)

To search for the signal in the ARS time window, the reference shape is shifted, in 1

ns steps, from its original position across the window until the best fit is found. The best

fit is obtained where the χ2 is minimal and this also defines the arrival time of the signal.

The arrival time is then expressed as the difference (in time) between the position of the

minimum of the reference shape and the position where the best fit was found. To

minimize the χ2 functional, we take the derivative of equation ( 3.2) with respect to the

amplitude and search for minima:

∂χ2(t)

∂a(t)
= −2

127∑

i=0

(xi − a(t)hi−t)hi−t,

solving for the amplitude results in:

a(t) =

∑127
i=0 xihi−t∑127

i=0 h2
i−t

. (3.4)
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The waveform algorithm is computer-time consuming. To improve its time efficiency

and also reduce the impact of accidental events, the algorithm has been optimised to

search for signals in a 80 ns segment of the ARS window. This “new window” has been

set such that it is centered about the average arrival time for physics events. From this

point on, we will use [imin, imax] to denote the limits of the effective ARS analysis window.

3.1.1.1 Baseline fitting

The first part of the waveform analysis is to check if there is a physical signal present

or not. This is done using the baseline fitting, by defining a baseline b and minimizing the

functional:

χ2 =

imax∑

i=imin

(xi − b)2, (3.5)

which minimizes to:

b =
1

(imax − imin)

imax∑

i=imin

xi. (3.6)

If the χ2 is less than a set global threshold χ2
0
, the baseline fit is considered sufficient

and the event is ignored (no signal). Else if χ2 is larger, the baseline fit is considered not

good enough and a one pulse fit will be implemented. An example of the outcome of a

baseline fit is shown in figure 3.1.

3.1.1.2 One-Pulse fitting

The one pulse fit is implemented if the baseline fit χ2 in equation ( 3.5) is larger than

χ2
0

and this algorithm searches for the possibility of having just one signal. In this case, we

minimize the functional:
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Figure 3.1: An example of a baseline (noise) fit. The PMT signal is shown in black and the

fit is shown in red.

χ2(t1) =

imax∑

i=imin

(xi − a1(t1)hi−t1 − b(t1))2. (3.7)

The minimization is done with respect to the amplitude a1 and also the baseline b and

it yields:

∂χ2

∂a1

= −2

imax∑

i=imin

(xi − a1(t1)hi−t1 − b(t1))hi−t1 ,

(3.8)

∂χ2

∂b
= −2

imax∑

i=imin

(xi − a1(t1)hi−t1 − b(t1)). (3.9)
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This set of equations can also be written as:



∑imax

i=imin
xihi−t1

∑imax

i=imin
xi

 =



∑imax

i=imin
h2

i−t1

∑imax

i=imin
hi−t1

∑imax

i=imin
hi−t1

∑imax

i=imin
1




a1(t1)

b(t1)

 (3.10)

Similar to the case of the baseline fit, we also evaluate the χ2 against a preset χ2
1

to test

its goodness. If χ2
0
< χ2 < χ2

1
, the one pulse fit is deemed sufficient. Else if χ2 > χ2

1
, a two

pulse fitting algorithm is invoked. An example of a one pulse fitting is shown in figure 3.2.

Figure 3.2: A one pulse fit (red) of the PMT signal (black).

3.1.1.3 Two-Pulse fitting

The two pulse fit is employed if the χ2 in equation (3.7) is larger than χ2
1

indicating

that the one pulse fit is not adequate to reproduce the signal. In that case, the two pulse fit

will try to search for a second pulse. Therefore, the function to be minimized is:
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χ2(t1, t2) =

imax∑

i=imin

(xi − a1(t1, t2)hi−t1 − a2(t1, t2)hi−t2 − b(t1))2, (3.11)

The minimized set of equations can be expressed as:



∑imax

i=imin
xihi−t1

∑imax

i=imin
xihi−t2

∑imax

i=imin
xi


=



∑imax

i=imin
h2

i−t1

∑imax

i=imin
hi−t1hi−t2

∑imax

i=imin
hi−t1

∑imax

i=imin
hi−t1hi−t2

∑imax

i=imin
h2

i−t2

∑imax

i=imin
hi−t2

∑imax

i=imin
hi−t1

∑imax

i=imin
hi−t2

∑imax

i=imin
1





a1(t1, t2)

a2(t1, t2)

b(t1, t2)


(3.12)

Figure 3.3: An outcome of a two pulse fit (red) of a PMT signal (black).

3.1.2 The clustering algorithm

Most of the photon energy is contained within one particular central block, the rest is

well contained in a few neighbouring blocks. When one photon hits the calorimeter most
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blocks record noise and only a few (≈ 9) blocks record an actual signal. The group of

blocks recording a signal coming from the same incident particle is called a cluster. In

addition, multiple particles can be detected by the calorimeter during a single event, be it

from the same or different reactions. Once they hit the calorimeter, each of these particles

will generate electromagnetic showers which may overlap. The clustering algorithm

comes in handy in the spatial separation of such events and assigns each participating

calorimeter block to its cluster. An example of a multi-particle event is π0 production

where the pion decays into two photons. In the case both photons hit the calorimeter, the

clustering algorithm is useful in disentangling the two electromagnetic showers associated

with the event.

Using an energy threshold that is set differently for each kinematic, the clustering

algorithm looks for the energy sum of a combination of four neighbouring blocks. This is

done for every combination of four adjacent blocks using an algorithm called cellular

automata [62]. To construct the clusters, the algorithm first looks for the main impact

block, also called the local maxima, see figure 3.4. With the impact block identified, the

algorithm then checks the amplitude of the neighbouring blocks to form a cluster. To be

added to a cluster, the condition is that a neighbouring block should have a lower

amplitude than the local maxima. For each cluster, the total energy is computed as follows:

Ecluster =
∑

i

CiAi,

where Ci and Ai are the calibration coefficient and signal amplitude for block i,

respectively. The index i loops over all the blocks identified to belong to a cluster.

The point of impact x is calculated as a weighted sum block positions. The weighting

factor is a logarithm of the relative energy deposited in each block:
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Figure 3.4: Illustration of the clustering algorithm with the selected blocks of impact in

violet and the local maxima shown in red for each cluster.

xcluster =

∑
i wixi∑

i wi

, wi = max

{
0,W0 + log

(
Ei

E

)}
(3.14)

The logarithmic weighting factor accounts for the fact that the electromagnetic

shower decreases exponentially with distance. Therefore, the further a block is from the

impact point, the less it contributes to the total cluster energy. The term W0 makes it

possible to further adjust the weight of each block as a function of reconstructed energy.

As W0 goes to infinity, the weight distribution is uniform but for small W0, blocks with a

relatively higher energy dominate. Since clustering is performed after the waveform

analysis, W0 is adjusted for each waveform analyzed calorimeter signal after the

minimization.

The computation of the position presented above assumes the electromagnetic

shower begins at the surface of the calorimeter, which is not the case. The shower starts at

a certain depth a correction has to be applied to cater for that. Furthermore, depending on

the distance between the calorimeter and the 15 cm target, particles from different
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interaction points (along the target) may have significantly different propagation lengths

before hitting the calorimeter. The final corrected hit position is then:

xcorr = x

(
1 − a
√

L2 + x2

)
, (3.15)

where a (has been estimated to be about 7 cm from simulation and elastic data) is the

depth at which the shower starts and L is the distance from the vertex to the calorimeter

point of impact.

The time of arrival of each photon event (event time) is also defined as the time of the

cluster. To calculate the cluster time, we weigh the arrival times of each signal (channel)

composing the cluster as follows:

Tcluster =

∑
i Aiti∑
i Ai

, (3.16)

Ai is the amplitude of signal in channel i and ti is the arrival time of the signal.

3.2 Analysis for Experiment E12-06-114

3.2.1 Reference shapes

In the interest of waveform analysis, each of the 208 calorimeter blocks has a

reference signal extracted and assigned to it. The reference shapes were extracted from

elastic calibration data. This is because elastic data were acquired at low current (5 µA)

and less susceptible to pileup. Moreover, the elastic reaction channel is very constrained

and suffers less accidentals (noise) than production data. To select even a cleaner sample,

we chose signals with a high energy deposition in the calorimeter. For each calorimeter

block, the first signal is weighted by its amplitude. Afterwards, an iterative, averaging

process follows where other signals are added to the first with a weight of their amplitude.

As the amplitudes are averaged, the signals are also shifted in time to superimpose pulses
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arriving not exactly at the same times. A set of 208 reference shapes corresponding to 208

PMTs was created.

Since the Fall of 2014, five elastic calibrations have been done. Reference pulses

were extracted from each elastic calibration data. The decision on which shapes to use for

each production data acquisition period was based on how much the shapes have changed

from one calibration data to the next. In general there were no significant changes in most

shapes across all calibration data. In a few cases (5 calorimeter channels) some channels

have visibly non-negligible changes like reflections in the signal as shown in figure 3.5

and obviously the same shape cannot be used for data corresponding to the two different

periods of data acquisition.
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Figure 3.5: A comparison of the reference pulse extracted for trigger number 3 from the

Fall of 2014 and Spring 2015 data sets. A reflection caused some bumps at the trailing tail

of the pulse in the Fall. This had been fixed for the Spring run.
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A study was done to investigate by how much these reference shapes differ from one

block to the next. As a reminder, a different shape is used for each calorimeter block

(PMT). To understand if it is necessary to use 208 different reference shapes, properties of

the shapes such as the Full Width at Half Maximum (FWHM), rise times (leading edge)

and fall times (trailing edge) were compared. Using the integral binning of 1ns (ARS

sampling rate), it is difficult to see the differences. Instead, a linear interpolation was

implemented to get a fraction of a nanosecond precision. Shown in figure 3.6 are the

results after the linear interpolation. Overall, even though the differences are small, one

can notice variations from one block to the next.

3.2.2 Waveform Analysis Optimization

The waveform analysis procedure entails fitting the ARS signal for either zero, one or

two pulses for each event. As already explained in earlier sections, the decision on how

many pulses to search for (and then fit) is based on the progressive computation of a χ2,

starting from a baseline fit χ2
0
. It is therefore necessary to study and optimize the

waveform analysis to search for the optimum χ2 values for each threshold χ2
0
, and χ2

1
.

To determine the optimal values of the thresholds χ2
0
, and χ2

1
, we studied the effect of

these values on several parameters such as:

• The energy resolution of the calorimeter,

• The reconstructed means and resolutions of the exclusivity peaks (proton missing

mass and π0 invariant mass),

• The ep → ep elastic invariant mass W2,

• The number of π0-like events as a function of the total number of events,
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Figure 3.6: Properties of the reference shapes for all calorimeter blocks. Top panel: Rise

times (left) and fall times as a function of trigger number.

Bottom panel: Full Width at Half Maximum for all blocks. All the blocks have similar

signals except for blocks 49 and 170.

• The computation time.

The value of χ2
0

has the biggest impact on the energy resolution because it decides

which events have to be considered as background and which events have a signal above

background. Figure 3.7 shows results of the study of the effect of different values of χ2
0

on

the energy resolution and the resolution of the elastic ep → ep reaction. The final

optimal value of χ2
0

was set to 60 MeV and 300 MeV for χ2
1
. For a χ2 greater than 300

MeV, a two pulse fit will be triggered.
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Figure 3.7: The energy resolution (GeV) as a function of the fit parameter χ2
0

(left panel)

and the elastic invariant mass W2 as a function of χ2 (right panel). This figure was adapted

from F. Georges in his report to the Hall A DVCS collaboration [68].

3.3 Calorimeter-HRS Coincidence Time Calibration and Optimization

The ability to determine the time of arrival of each of the detected particles in the

detectors is a vital component of this experiment. Our ability to measure time with a good

resolution plays a significant role in suppressing accidental events and improving the

energy resolution of the calorimeter. Since the spectrometer has an excellent momentum

resolution, the limiting factor in the measurement of the missing mass is the calorimeter

energy resolution. How well the photon energy is measured significantly determines how

well the recoil proton’s missing mass is reconstructed. To improve the ability to determine

the desired photon’s energy, one way is to apply corrections and optimize the distribution

of the HRS-Calorimeter coincidence times for each calorimeter block. An additional

calibration is done to get the signals to arrive within the same time window for all

channels, nicely isolating purely accidental events from accidental plus DVCS events.

This results in a global time window enabling us to apply a global calorimeter timing in

the selection of analysis events, instead of a channel-dependent event selection criteria.
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To apply the timing corrections, properties of the electron signal propagation in the

spectrometer and the photon signal propagation in the calorimeter that will introduce

differences in coincidence times from one event to the next were considered. The

following are the properties studied and corrected for:

• Jitter in the trigger that stops the ARS,

• Arrival time as a function of each calorimeter block (calibration),

• Time as a function of each S2m scintillator paddles (16 of them),

• Distance (time) of light propagation from the hit point in a paddle to the timing

phototube,

• Electron path length as determined by the relative momentum and vertical angle of

the electron.

3.3.1 Trigger Jitter Correction

An ideal timing signal should have a fixed period and similarly a fixed starting point

over time [63]. In reality, all timing signals have some statistical fluctuations which are

inherent to the detector. As a result of these random fluctuations, two identical signals will

not always trigger at the same point but instead will have a time variation which is

dependent on the amplitude of the fluctuations [63]. The variations of the timing signals

rising and falling edges as compared to the ideal signal are defined as jitter. In PMT

signals, jitter is caused by factors such as:

• Variations in the number of photons in the detector,

• Gain variations in the PMT and

• Transit time of photons through the detector.
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In this experiment, the timing of the electron was set by the S2m scintillators and a

correction needs to be applied to minimize the amplitude and the effects of the fluctuations

in the S2m arrival time with respect to the signal which sets the trigger (the ARS stop).

The jitter correction is applied for each event by considering the difference between the

S2m signal timing and the trigger signal timing given by (in nanoseconds):

tcorr = traw + (tS 2m − ttrigger)/10, (3.17)

where tcorr is the corrected time, traw is the coincidence time for an event, tS 2m is the

S2m signal time and ttrigger is the trigger signal time for an event event. The factor of 10

accounts for the fact that the S2m TDCs have a better time resolution (100 picoseconds)

than the ARS (1 nanosecond). An example of the average widths of the arrival time before

the jitter corrections is shown in the top left panel of figure 3.13. The trigger jitter

correction is the most significant step in the coincidence time optimization. This can be

seen by the improvement introduced to the time distributions (after its implementation)

and shown in the top right panel of figure 3.13.

3.3.2 Calorimeter Time Calibration

Each calorimeter block has a cable which transmits the signal from the block’s PMT

to the DVCS trigger. The cable length varied from one calorimeter channel to the next and

this introduced differences in the signal propagation times across channels. An

optimization was done to correct for this difference for all the production data. A 150

MeV cut (on the photon) was applied to select good photon events. The mean of the arrival

times for all the events passing the selection criteria in each channel was considered as the

channel time. These channel arrival times were then used to calibrate the event time such

that the coincidence peak was centered around zero for each calorimeter channel. After

this calibration all channels have their times aligned and hence a global time requirement
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can be imposed for event selection during data analysis. The left panel of figure 3.8 shows

these arrival times for each calorimeter block and a calibrated time spectrum for all blocks

considered at once is shown on the right panel. Since the different kinematics have the

calorimeter at different distances from the target, the arrival times for each channel vary

from one setting to the next and the propagation of the electron in the spectrometer is also

kinematic dependent. This makes it necessary to apply an independent calibration for each

kinematic. After this calibration, the next goal is then to improve the dispersion of the

time spectrum by applying several corrections as detailed in the following sections.
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Figure 3.8: Calibration of the spectrometer-calorimeter coincidence times.Left channel:

the spectrometer-calorimeter coincidence times (average coincidence time for events) as a

function of calorimeter channels for a few kinematics. Since the different kinematics have

the calorimeter at different distances from the target, the arrival times for each channel

vary from one setting to the next. Right panel: the spectrometer-calorimeter coincidence

time with all the channels considered at once after calibration using the channel-dependent

arrival times (shown on the left panel). After this calibration, we have a global calorimeter

time and we can apply a universal timing selection criteria to select events for final cross

section analysis.
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3.3.3 Correction for S2m Paddles

The detector package in the spectrometer has sixteen scintillator paddles and the

electron’s arrival time associated with each of them varies slightly from one to the next,

depending on the momentum of the scattered electron. The time distribution of each

paddle was histogrammed and the mean of each histogram was used as a correction factor

to center the time distribution. Figure 3.9 shows by how much time each scintillator

paddle was shifted for centering for a few kinematics. Again, the correction factor shows

some dependence on the kinematic setting because of differences in the momentum

setting of the HRS for each.
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Figure 3.9: Scintillator paddle corrections: time offsets for each scintillator paddle. These

were used to shift the coincidence time corresponding to each paddle to be zero-centered.

A difference in the momentum setting of the spectrometer is responsible for the varying

correction factors for each paddle as a function of the kinematic setting.
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3.3.4 Propagation time in scintillator material

The spectrometer electronics are designed such that the right (right hand-side relative

to the beam direction) phototubes set the timing for S2m. Since the scintillators are 1

meter long, different particles will fire each paddle at points that are at different distances

from the right phototubes. Therefore, the scintillation signals have to spend different

amounts of time propagating through the paddle material before being collected. To

correct for this difference in propagation times, the correlation between the arrival times

and the position of a hit along the length of the paddles ( in the non-dispersive direction,

y) was empirically studied. A linear correlation between the time and the position was

observed and fitted using a first degree polynomial to extract the slope and the intercept.

An example of the correction coefficients is shown for a few kinematics in figure 3.10.

The correction for the offset (intercept) is very negligible and can be ignored. The arrival

time is then corrected as follows:

tcorr = traw − (mS 2m · yS 2m + cS 2m), (3.18)

where tcorr is the corrected time, mS 2m is the slope of the correlation for a scintillator

paddle, yS 2m is the y position for an event and cS 2m is the intercept for a paddle.

3.3.5 Electron path length in spectrometer

From one event to the next, there is a variation in the electron’s momentum.

Therefore, different electron events (within the same kinematic or momentum setting of

the HRS) do not bend by the same amount in the magnetic field of the spectrometer.

Hence the path length in the spectrometer varies with events. In essence, since the

scintillator paddles are spread out in the dispersive direction relative to the electron’s

trajectory (x direction), each scintillator paddle gets fired by electrons of a slightly



136

S2m paddle number
0 2 4 6 8 10 12 14 16

S
lo

p
e
 (

n
s
/m

)

-6

-5.5

-5

-4.5

-4

-3.5

-3
kin48_4

kin48_3

kin48_2

kin48_1

Y position-calo time slopes

S2m paddle number
0 2 4 6 8 10 12 14 16

In
te

rc
e
p
t 
(n

s
)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
kin48_4

kin48_3

kin48_2

kin48_1

Y position-calo time intercepts

Figure 3.10: Slopes (right) and intercepts (left) for each scintillator paddle. These were

extracted by empirically studying the correlation between the arrival time and the non-

dispersive position (y) for each scintillator paddle. The intercepts are negligible and can be

ignored.

different momentum fraction compared to other paddles and hence different electron path

lengths induced by that. To correct for the differences emanating from different electron

path lengths in the HRS, the correlation of the vertical angle (θ) and the arrival times was

empirically studied. A linear correlation was observed and the time correction was applied

in a similar fashion as the previous section. A similar study was also done as a function of

the momentum of each event resulting in another linear correlation between the event

momentum and the arrival time. A summary of the extracted slopes and intercepts for

each scintillator paddle is shown in figures 3.11 and 3.12. The correction for both the

angle and the momentum is done using the offset and the slope in the same way as done in

the previous section.
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Figure 3.11: Slopes (right) and intercepts (left) corresponding to each scintillator and

extracted by looking the the correlation between the theta angle and the coincidence time.
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Figure 3.12: Slopes (right) and intercepts (left) corresponding to each scintillator

and extracted by looking the the correlation between the momentum fraction and the

coincidence time.

Fig. 3.13 shows a summary of the the amount of dispersion (standard deviation) as a

function of channel number after each time correction. Starting with a maximum standard

deviation of about 3 ns after the first (jitter) correction, after all corrections have been
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applied, on average a sigma of about 0.85 ns is obtained at a 150 MeV cut in photon

energy.
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Figure 3.13: A summary of the coincidence time calibration and optimization results. Top

left: widths (sigmas) of the time distribution as a function of calorimeter block before

any correction is applied. Top right: widths of the time distribution per block as a series of

accumulating time corrections are applied as shown in the legend. Bottom left: An example

of histogramed final corrected widths for all 208 calorimeter blocks in kinematic 36 1.

With an energy cut of 150 MeV, an average of 0.85 ns was achieved. Bottom right: The final

calibrated and optimised calorimeter time shown for kinematic 48 3. The 4 nanoseconds

beam structure can be seen in the coincidence time distribution.
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3.4 Calorimeter Energy Calibration

Calibrating the calorimeter entails adjusting the high voltage of the 208 calorimeter

phototubes such that for the same energy deposition, we get the same signal response

across all PMTs. Balancing the gain for each channel is necessary because it allows us to

set a global clustering threshold for triggering on the calorimeter during data acquisition.

Calibration can be done using either the ADC or the ARS signals or both but we chose to

calibrate the ARS because they have a superior energy resolution compared to the ADCs.

The calorimeter was first calibrated and tested before the experiment using cosmic rays.

This pre-beam adjustment of the gains of the phototubes is then followed by an absolute

energy calibration using elastic electrons at the beginning and halfway through the

experiment. In this section we first discuss the pre-beam calibration and later conclude by

describing the procedure of and the results from the elastic calibration.

3.4.1 Cosmic ray calibration

Cosmic rays are an ionizing radiation gift from nature and they are useful in testing

and calibrating a number of detectors before the experiment starts. The minimum energy

deposition of cosmic rays crossing the crystals of the calorimeter vertically along the

shortest distance (3 cm) is 35 MeV per block, producing about 35 Cherenkov photons on

average [4] and that is enough to calibrate the phototubes. The energy deposition of

ionizing particles depends on the length of the material they traverse. Therefore, to ensure

a selection of events with a uniform energy deposition across all crystals, only particles

that had a vertical trajectory through the calorimeter were selected. This was done by

requiring that a particle fires both the top and the bottom crystals in the same column, in

that way traversing the same distance in all impact blocks. The vertical cosmic cut was

done offline, after all the cosmic events had been saved. Typically, the cosmic rate was

4Hz and the DAQ was run overnight for a period of 10 to 12 hours harvesting between
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140k to 170k cosmics. After applying vertical and pedestal cuts, we were left with an

average of 400 to 500 events per column.

An integration (above pedestal) of the ARS signals of the selected cosmic spectrum

was then fitted with a Gaussian for each channel. The mean from the fit was taken as the

starting point of the calibration and the high voltage for each channel was then adjusted

such that the mean is shifted and well centered about 3000 (high enough to be clearly

separated from the pedestal but not too high up the capacity of the ARS) integrated ARS

channels.

To adjust the HV, we consider the relative gain, defined as:

G = αHVβ, (3.19)

where β is a block specific parameter which is on average, approximately 7 for PMTs

used in this experiment. An average of four iterations was sufficient to align the gains of

the PMTs to 4.5% (for the ARS) and 5.3% (for the ADCs) across all calorimeter channels.

For each iteration (calibration step), the next HV values were calculated as:

HV2 = HV1

(
G2

G1

) 1
β

, (3.20)

where G1 and HV1 are the starting gain and high voltage respectively. G2 and HV2

correspond to the target gain (3000) and the high voltage set to achieve this target,

respectively. After four iterations, no better calibration could be achieved. For an absolute

energy calibration we next used elastic electrons using the first beam sent by CEBAF into

the hall.

3.4.2 Elastic calibration

To calibrate the absolute response of the calorimeter phototubes we performed an

elastic calibration at the beginning and then later stages of the experiment. During elastic
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calibrations, the polarity of the HRS was set to positive to detect elastically recoiling

protons. Elastic electrons were detected in the calorimeter. The calibration was challenged

by a small acceptance of the HRS allowing only a small portion of the calorimeter to be

illuminated. To circumvent the acceptance limitation, the vertical acceptance was

increased by placing the calorimeter at 6 metres from the target. However, that does not

solve the horizontal acceptance challenge and to address that the calorimeter was placed at

three different (but overlapping in terms of acceptance) angles, see figure 3.14.

3.4.2.1 Procedure

In order to reconstruct the energy deposited in the calorimeter, one needs to first

extract the coefficients that transform the signals from each calorimeter PMT to the energy

deposited in each block. The calibration is then based on collecting this cluster energy and

finding block coefficients which will reproduce the deposited energy [4]. The total energy

is the sum of all depositions in the calorimeter. If we denote the signal collected from

block i during event j by Ai
j
and the corresponding block coefficient by Ci, the total energy

deposited is given by:

E j =

208∑

i=0

(CiA
j

i
) (3.21)

The calibration coefficients are then calculated by minimizing the functional:

χ2 =

Nevents∑

j=0

E j −
208∑

i=0

(CiA
j

i
)


2

(3.22)

where E j is calculated using HRS information as follows:

E j = Eb + Mp − Ei
p. (3.23)
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Figure 3.14: The calorimeter face showing the three different settings used to fully

illuminate the calorimeter’s acceptance during the elastic calibrations. For the calibration

the central momentum of the HRS (PHRS ) was 3.0 GeV, the central angle of the HRS (θHRS )

was 32.5o, the beam energy (EB) was 6.4 GeV and the calorimeter was placed at 6.0 m from

the target.

E j is the electron energy, Eb the beam energy, Mp the proton mass and Ei
p the recoil

proton energy for event i. Minimizing equation 3.22 results in the following system of

linear equations:

208∑

i


Nevents∑

j=1

Ak
jA

i
j

Ci =

Nevents∑

j=1

E jA
k
j, (3.24)

where k goes over all calorimeter blocks.
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Inverting the 208 × 208 matrix
∑Nevents

j=1
Ak

j
Ai

j
gives the calibration coefficients.

3.4.2.2 Implementation

A selection of good elastic scattering events was done on the HRS variables. A 2D

graphical cut on the horizontal scattering angle (L.tr..tg ph) and the fractional deviation of

the protons’ momentum from the central momentum of the HRS (L.tr.tg dp) was used to

select the ”elastic line” for protons, see the left panel of figure 3.15. Vertex cuts were

imposed on the selected events to suppress contributions coming from the end caps of the

target cell. The cuts applied on the vertex are shown on the right panel of Fig. 3.15. Since

an elastic reaction is clean, a single pulse waveform analysis was used to extract the time

and energy information from the ARS.
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Figure 3.15: Criteria for selection of good elastic protons in the HRS. Left panel: a

2D plot of the horizontal scattering angle (L.tr..tg ph) and the fractional deviation of the

protons’ momentum from the central momentum of the HRS (L.tr.tg dp). The elastic line

(elastic protons in the spectrometer) can be seen on top of background. Right panel: the

reconstructed vertex z-coordinate and the applied cuts represented by the region in-between

the two red vertical lines.
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3.4.2.3 Energy Resolution

The calorimeter energy resolution was computed using data acquired for the elastic

calibration, after the calorimeter had been calibrated. The resolution was obtained by

comparing the value of the elastic electron energy obtained from the energy conservation

equation (3.23) using the HRS information, EHRS and the electron energy reconstructed in

the calorimeter using the calibration coefficients, Ecalo. The resolution is then computed as

the width of the energy discrepancy distribution (see figure 3.16) divided by the mean

reconstructed energy;

Energy resolution =
EHRS − Ecalo

〈
Ecalo

〉 (3.25)

Energy calibration results

Figure 3.16 shows an example of calibration results from an elastic calibration

performed in February 2015. The energy measured by the calorimeter was compared to

the one measured by the HRS to get the energy resolution of the calorimeter. At an

average 7 GeV electron energy, the calorimeter was found to have a 3.0% resolution. The

results corresponding to other calibrations are summarized in table 3.1.
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Figure 3.16: Elastic calibration results for the February 2015 calibration. Top panel: the

energy of elastic electrons reconstructed in calorimeter is shown on the left. On the right

is the energy resolution obtained from the elastic calibration. A 3.0% energy resolution

was obtained at an average 7 GeV elastic electron. Bottom panel: a plot of the extracted

calibration coefficients as a function of block number on the left and the same coefficients

histogrammed on the right panel. Excluding the blocks at the edges, calibration coefficients

are within 5% in agreement across all other blocks. The edge blocks have fewer neighbors

and hence more susceptible to energy leaks, therefore they have higher than average

calibration coefficients.
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Ebeam Eelectron σ (∆ E) Resolution ∆Φ ∆θ

Set [GeV] [GeV] [GeV] [%] [mrad] [mrad]

December 2014 7.3 5.0 0.205 4.10 1.42 1.20

February 2015 9.6 7.0 0.213 3.00 1.10 1.02

February 2016 4.4 3.1 0.144 4.65 2.10 1.67

April 2016 4.4 3.1 0.153 4.94 2.03 1.71

October 2016 6.45 4.2 0.133 3.17 1.72 1.41

December 2016 6.45 4.2 0.154 2.39 1.64 1.36

Table 3.1: Summary of elastic calibrations for different elastic data sets. Columns 4 and 5

show the energy resolution in energy units and as a percentage, respectively. The last two

columns show the horizontal angular resolution (∆φ) and the vertical angular resolution

(∆θ) of the calorimeter. The definitions of both projections of angular resolution is given in

section 3.4.2.5.

3.4.2.4 Trigger Calibration and Calorimeter Clustering Thresholds

Even though the absolute energy calibration is done based on the ARS signals, it is

still important to perform the calibration against the trigger (ADC) signals too. As

explained in chapter 2 the decision on whether or not to consider an event as having fired

the calorimeter is informed by a tower formed by the trigger signals of 4 calorimeter

channels. The trigger calibration is therefore important since it informs the choice of the

trigger tower threshold (relative to the expected photon energy in that kinematic) set

during data acquisition. The DAQ calorimeter tower threshold can be adjusted depending

of factors like event rate and or dead time concerns. For example if it has been set too low

and a high rate (inducing large dead times) is observed as a result, it can be increased to

ease the DAQ rate.
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The trigger can be calibrated using two methods. The first method is exactly the same

as the one explained in 3.4.2.1, but this time using a pedestal subtracted ADC signal for

the event signal. The second method calibrates the trigger signals against the already

calibrated ARS signal by using the correlation between the two. Plotting the trigger

signals against the calibrated ARS and fitting using using a first degree polynomial, the

slope gives the calibration coefficient and the intercept is the ADC pedestal. An example

of this method is shown for one channel of the calorimeter in figure 3.17. Results of the

trigger calibration for all elastic data sets are shown in table 3.2.

Mean coefficient Mean coefficient

Elastic data set [GeV/ADC ch.] [ADC ch./GeV]

December 2014 0.00424 235.8

February 2016 0.00583 171.5

April 2016 0.00911 109.7

October 2016 0.00606 165.0

December 2016 0.00610 163.9

Table 3.2: Elastic trigger calibration coefficients for different elastic data sets.

At the waveform analysis stage of data processing, clustering thresholds slightly

higher than the values of the DAQ triggering thresholds were used to get a cleaner photon

sample. The final values for different kinematic settings are summarized in table 3.4
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Figure 3.17: Calibrated ARS energy (horizontal axis) and the ADC signal (vertical axis)

for calorimeter channel 2 from October 2016 elastic data. The blue points represent the

data and the red line is a fit to the data. From the fit, the slope (calibration coefficient for

this channel) is about 160 ADC channels per GeV. The ”y”-intercept (ADC pedestal) is

about 60 ADC channels.

3.4.2.5 Calorimeter Angular Resolution

The energy resolution of the calorimeter has an impact on how well we can

reconstruct the missing mass of the undetected proton. On the other hand, the angular

resolution tells us how well (or not) we can distinguish two points of impact on the

calorimeter. The angular resolution is calculated for two angles: one in the horizontal

plane (φ) and another in the vertical plane (θ). We compute each angle using two methods.

One method uses the momentum vector of the proton in the HRS and the other uses the
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Kinematic setting DAQ threshold (GeV)

kin36 1 1.0975

oldkin36 2 1.0975

kin48 1 0.4243

kin48 1 (run 12508) 0.8907

kin48 2 0.8907

kin48 2 (run 13000, 13183-4) 1.0073

kin48 2 (run 13001 to 13015, 13191 to 13193) 0.3076

kin48 3 1.0073

kin48 3 (run 12838) 0.4243

kin48 4 (run 13100 to 13162) 1.0073

kin48 4 (run 13279 to 13418) 1.4571

kin36 2 1.5200

kin36 3 1.5200

kin60 1 0

kin60 3 0

Table 3.3: DAQ thresholds (GeV) for each run period. The last two kinematic settings had a

low DAQ event rate hence the decision to remove the tower requirement on the calorimeter

to invite more statistics.

energy reconstructed in the calorimeter. The resolution is then given by the difference

between the angle computed based on the HRS data and that calculated using the

calorimeter data, assuming a perfect HRS momentum resolution.
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TriggerSim clustering

run period threshold (GeV)

kin36 1 1.1

oldkin36 2 1.1

kin48 1 0.5

kin48 2 0.9

kin48 3 1.1

kin48 4 (run 13100 to 13162) 1.1

kin48 4 (run 13279 to 13418) 1.5

kin36 2 1.6

kin36 3 1.6

kin60 1 0.8

kin60 3 1.0

Table 3.4: Final values for clustering threshold, in GeV, for each run period.

Procedure

Starting from the kinematics of the elastic reaction (e + p→ e’ + p’) and confining

the electron beam on the z-axis [64]:

(0, 0, pb
z )e + (0, 0, 0)P = (pe′

x , pe′

y , (pe′

z )′e + (pP′

x , pP′

y , pP′

z )′P (3.26)

(p′ex, p′ey, p′ez) = (−p′Px,−p′Py, pb
z − p′Pz). (3.27)

Since pb
z = Eb the following formulae can be written for the angles:
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θe
calo = atan

(
p′ex

p′ez

)
θe

HRS = atan

( −p′Px

Eb − p′
Pz

)

φe
calo = atan


p′ey√

(p′ex)
2 + (p′ez)

2

 φe
HRS = atan


−p′Py√

(p′
Px

)2 + (Eb − p′
Pz

)2


,

(3.28)

and the angular resolution is given by;

∆θ = θe
HRS − θe

calo

∆φ = φe
HRS − φe

calo

(3.29)

Table 3.1 summarizes the results of the angular resolutions for all the elastic data we

acquired. In figure 3.18 we show the angular resolution for the elastic calibration

performed in Fall 2014. In figure 3.18 we also shown the angular resolution calculated for

each of the three calibration settings needed to fully illuminate the calorimeter during the

elastic calibrations.

3.4.3 Calibration Optimization with π0

As the calorimeter gets exposed to beam over time, its crystals undergo radiation

damage and they lose their transparency, depending on how close they are to the beam.

The gains of the PMTs also change over time and this gradually makes the elastic

calibration coefficients invalid. The disadvantage of the elastic calibration technique is

that it cannot account for gain variations between two calibrations. Moreover, the elastic

calibration is a time consuming procedure which takes hours to set up. It takes a minimum

of 4 hours to switch the polarity of the spectrometer from negative to positive and then an

additional 4 hours to reverse it for production. This means we cannot perform elastic

calibrations frequent enough to be sensitive to gain variations. Instead we use elastic

calibrations to extract first order calibration coefficients for the calorimeter.
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Figure 3.18: Angular resolution for the Fall 2014 elastic data. The top panels show

the global resolutions across the whole calorimeter face. The bottom panels show the

resolutions for 3 different regions on the calorimeter face. The calorimeter cannot be fully

illuminated at one setting hence 3 settings (in the case of the 2014 data the spectrometer

angle and momentum setting but for later calibrations it was the calorimeter angle) were

used.

A complimentary procedure using π0 is then used to monitor the gains and optimize

the calibration coefficients for each calorimeter crystal block on a daily basis. This

method relies on the detection of both exclusive photons originating from the decay of π0

mesons and adjusting the calibration coefficients such that we recover both the π0 invariant

mass and the proton missing mass. We adjust the individual gain factors of each block by

finding the extremum of the following functional [65]:
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F =

N∑

i=1

(m2
i − m2

0)2 + 2λ

N∑

i=1

(m2
i − m2

0), (3.30)

where the index i loops over the total number of events N, the masses m0 and mi are

the π0 rest mass and the invariant mass as reconstructed by the calorimeter for each event,

respectively. The first term in equation 3.30 measures the width of the reconstructed π0

peak while the second term has the Lagrange multiplier to enforce the constraint 〈mi〉 =

m0. The π0 invariant mass for each event is given by:

m2
i = 2E1E2(1 − cos(θγ1γ2

)), (3.31)

where E1, E2 are the energies of the two daughter photons of the π0. θγ1γ2
is the angle

between the two photons calculable from the 4-momentum vectors of both photons (q1,

q2) as:

cos θγ1γ2
=

q1 · q2

E1E2

. (3.32)

The calibration is performed iteratively by introducing a small block dependent gain

correction factor ǫk such that E
(k)

ji
→ E

′(k)

ji
= (1 + ǫk)E

k
ji
. The index k represents each

individual block contributing to the energy (E) of cluster j. To extract the calibration

factors we minimize equation 3.30 with respect to ǫk:

∂F

∂ǫk

= 2

N∑

i=1

(
m2

i − m2
0 + λ +

∑

k

ǫk

∂m2
i

∂ǫk

)∂m2
i

∂ǫk

= 0.

(3.33)

The solution to this set of linear equations is given by:

ǫk = [C−1]kk′(D − λL)k′ , (3.34)

where:
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Ckk′ =

N∑

i=1

(∂m
′2
i

∂ǫk

∂m
′2
i

∂ǫk′

)
,

Dk = −
N∑

i=1

(
(m2

i − m2
0)
∂m

′2
i

∂ǫk

)
,

Lk =

N∑

i=1

∂m
′2
i

∂ǫk

.

(3.35)

The effect of the calibration optimization with π0 is illustrated in figure 3.19. After

this optimization, we are able to recover better the π0 rest mass and also gain a some

improvement in the resolution.
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Figure 3.19: Calorimeter calibration optimization with π0 mesons. Left panel: the π0 rest

mass reconstructed using the calibration coefficients from the elastic calibration only. Right

panel: the π0 rest mass reconstructed using both the elastic calibration coefficients and the

optimal values extracted from the π0 optimization procedure. We are able to recover better

the π0 rest mass (∼ 0.135 GeV) after the optimization.
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3.5 Pileup Studies

When running at higher currents, we risk a loss in energy resolution as a consequence

of a high accidental rate (the accidental rate is proportional to the square of the current)

and an increase in pileup events. The default analysis searches for only one cluster and fits

the signal using only one pulse. However, when going to high currents, one should

consider the possibility of pulse pileup and the growing significance of two clusters in the

analysis. This study was done to evaluate by how much we lose on the resolution of the

exclusivity peaks when the current is increased. Data at three beam currents was studied:

5 µA, 10 µA and 15 µA. To clean up the exclusivity peak, the following steps were done:

• Applying a number of cuts on the physics data, either looking at single or two

cluster analysis

• Accidental subtraction

• π0 subtraction

To account for accidentals, we looked for events in a 10 ns time window away from

the main coincidence window, which was also 10 ns (see the left panel of figure 3.20).

To evaluate the significance (or lack of) of two pulse over single pulse fitting during

analysis of the calorimeter data, the data at the three different currents were analyzed first

by fitting a single and then fitting two pulses. To make the case for the necessity of one

technique over the other, the resolution of the pion invariant mass and that of the pion

production missing mass(ep→ eγγX) was used. As shown in figure 3.21, the resolution

of the exclusivity peak worsens quicker with increasing current for a single pulse fit than it

does for the double pulse technique. Therefore, for the final waveform analysis, the

two-pulse fit was implemented across all data.
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Figure 3.20: Pileup studies with different beam currents on the target. Left panel: A section

of the calibrated coincidence time window illustrating the coincidence peak centered at zero

(area shaded in red). Away from the coincidence peak is a flat accidental or background

region. To estimate the background under the coincidence peak, we look at a time window

in the background region (area shaded in black). Both the coincidence and accidental

window were chosen to be the same width in time.

Right panel: Noise to signal plus noise ratio for Fall 2014 (kin36 1) data showing an

increase of the background with current.

3.6 Conclusion

In this chapter we have presented and discussed the tools and methods used to

analyze calorimeter data. Emphasis was put on “general” analysis tools which were

developed for the first generation DVCS experiment in Hall A of JLab and then optimized

for experiment E12-06-114. The “general” analysis tools include the waveform analysis

algorithm used to fit calorimeter signals to extract their amplitude and time of arrival.

Critical to the waveform analysis is the extraction of reference shapes (pulses) for each

calorimeter channel. Extraction of reference pulses from elastic scattering data was
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Figure 3.21: The resolution of the π0 invariant mass as a function of beam current and

the choice of one-pulse and two-pulse fitting techniques. The resolution worsens faster

for single-pulse fitting (compared to two-pulse fitting) as current increases. For the final

waveform analysis of all the data, the two-pulse technique was used.

discussed in section 3.2.1. I extracted, updated and monitored the evolution of reference

pulses for all the periods of data acquisition. Also part of the general analysis tools is the

clustering algorithm used to integrate over calorimeter data to compute cluster, their

position and the total energy deposited. An important pre-requisite for clustering is a

proper calibration of the response of the photomultiplier tubes of the calorimeter to energy

deposited. An absolute energy calibration of the calorimeter was performed and it is

discussed in section 3.4.2. I analyzed and extracted calibration coefficients for all elastic

scattering calibration data acquired for experiment E12-06-114. In addition to energy
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calibration, I also performed the calibration and optimization of the

spectrometer-calorimeter coincidence time to improve the resolution of the coincidence

time spectrum and suppress accidental coincidences, as discussed in section 3.3. The

coincidence time calibration and optimization was performed for all experiment

E12-06-114 data.
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4 Monte-Carlo simulation

4.1 Introduction

The purpose of the simulation is to compute the experimental phase space

(acceptance) covered by the detectors for each event. The acceptance of the spectrometer

is a complicated hyper-volume of five variables: ytg (the position of the electron in the

non-dispersive direction) , φtg (the tangent of the angle made by the electron’s trajectory to

the non-dispersive direction), xtg (the position of the electron in the dispersive direction),

θtg (the tangent of the angle made by the electron’s trajectory to the dispersive direction)

and δtg (the fractional deviation of the electron’s momentum from the central momentum

setting of the spectrometer). The acceptance of the electromagnetic calorimeter is defined

by its x and y coordinates and the photon energy.

The simulation is also used to extract the experimental cross section by a fitting

procedure which will be discussed later in the chapter. The simulation is based on

GEANT4, a detector simulation package written in C++ [70]. In the simulation, the

detectors of interest to the experiment in the hall are implemented. This includes their

positions in the hall, material used to construct them and their dimensions. Geant4 also

provides and supports the fundamental particles of interest, their generation and

tracking [70]. The GEANT4 toolkit also handles the interaction of the final state particles

with matter, between the vertex and the detectors. Interactions before the vertex are

handled by the event generator. The DVCS simulation package in GEANT4 was set up by

R. Paremuzyan and M. Defurne [71] for the second generation DVCS experiment in Hall

A. I adapted the existing DVCS package for the kinematics of the E12-06-114 experiment.

The simulation is limited in that it can not reproduce the resolution effects of the

calorimeter as seen in the experimental data. To reproduce the calorimeter resolution in
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the simulation, I adapted, optimized and implemented a smearing algorithm developed by

M. Defurne [46].

In this chapter we will discuss the main features of the simulation. These features

include the event generator which incorporates some real radiative corrections. A brief

discussion of the experimental geometry will also be given. A procedure to adjust the

resolutions of the simulated calorimeter data so that they can match the experimental

resolution widths is also described. The final section of this chapter is dedicated to the

fitting procedure for cross section extraction.

4.2 Geometry and experimental set-up

The target cell and the scattering chamber described in section 2.3.2 are implemented

in the GEANT4 code exactly the same as in the hall and they are shown for the simulation

in figure 4.1. The spectrometer is not fully implemented but only its entrance window is.

The entrance window in the simulation is implemented with an acceptance twice as large

as the real one to make sure we fully simulate the acceptance of the spectrometer. An

electron is deemed to have been detected by the spectrometer once it reaches the entrance

window. An acceptance function (called the ”r-function”) is later used to determine if the

detected electron is within the good acceptance region of the focal plane. Just like the real

spectrometer, the entrance window is placed at a fixed distance from the target and is

rotatable by an angle (from the beamline) to be placed at the corresponding position for

each kinematic.

The electromagnetic calorimeter is fully implemented, including the positioning of

each of the 208 crystal blocks according to a survey done for each kinematic setting in the

Hall. The calorimeter also has its angle (from the beamline) and distance from the target

adjustable to match that of a kinematic setting of interest.
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Figure 4.1: The Hall A vacuum scattering chamber as implemented in the simulation is

shown here as the cylindrical mesh of blue lines. Also shown is the implementation of the

beam dump (labelled Lead Pipe), the spectrometer (HRS) entrance, HRS window, some

shielding and the target cell inside the scattering chamber.

The limitation of the simulation is that it cannot reproduce the correct proton missing

and π0 invariant masses and their resolutions. For this reason the simulation needs to be

fine tuned to match the data as discussed in section 4.5.
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4.3 QED Radiative Corrections

Radiative corrections refer to corrections for Bremsstrahlung effects, where a particle

possessing an electric charge emits radiation as it decelerates in an electromagnetic field.

Because of its light mass the electron is more susceptible to such interactions than the

proton. There are two types of radiative corrections: real and virtual radiative corrections,

see figure 4.2.

Figure 4.2: Examples of cases of real and virtual radiative effects at first order shown here

for electrophoton production. (a) Virtual radiative effect: an electron emits a photon before

scattering and reabsorbs it after, altering the electron’s momentum on both sides of the

vertex. (b) Virtual radiative effect: vacuum polarization where a virtual photon converts

into an electron-positron pair. (c) Real photon emitted either before the vertex or after.

4.3.1 Real Radiative Corrections

Real radiative effects refer to Bremsstrahlung emitted by either an incident or a

scattered electron. The emission of a real photon modifies the kinematics of the reaction.

Real radiative corrections can be external or internal. External radiative corrections are

implemented when the electron goes through matter. Internal radiative effects occur and
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their corrections are applied at the point of the interaction. As briefly mentioned in the

introduction, external radiative effects are handled by the GEANT4 toolkit. Let’s consider

an electron of initial energy E0 incident onto a material of thickness x radiation lengths7.

After traversing the material, the electron’s energy loss will follow the distribution [63]:

I(E0,∆E, x) =
b · x
∆E

[
∆E

E0

]b·x
, (4.1)

where ∆ E is the energy loss by the electron, b ≈ 4
3
[63].

Inverting equation 4.1, we get:

∆E

E0

= U
1

b·x . (4.2)

U is generated uniformly in range [0,1] in the simulation and the energy loss is

applied for each event and each material the electron traverses.

The real radiative processes generate a radiative tail in the exclusivity quantities

(proton missing mass and π0 mass) and since this modifies the kinematics of the reaction

experimentally, they have to be taken into account in the calculation of the spectrometer

acceptance using the simulation [4].

4.3.2 Virtual Radiative Corrections

Virtual radiative effects occur off nuclei at the reaction vertex. Virtual radiative

corrections to the Bethe-Heitler process contain vertex corrections and vacuum

polarization corrections [69]. At leading order in QED, three process (shown in figure 4.2)

contribute to radiative loses:

• An electron emits a photon before the vertex and re-absorbs it after. This changes

the electron’s momentum before and after the interaction.

7 The radiation length is an intrinsic characteristic of a material related to the amount of energy a particle

carrying an electromagnetic charge will lose by traversing a distance x of the material.
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• The virtual photon splits into an electron-positron pair.

• A real soft photon is emitted. A soft photon refers to when a second photon is

emitted and it has an energy much smaller than the initial and final electron energies

and also much smaller than the first and energetic photon [69].

All these modifications to the interaction also get convoluted into the cross section of

the reaction and have to be corrected for:

σexp = σBorn · ηvirt, (4.3)

where σBorn is the Born cross section (first order theoretical cross section) and ηvirt is

the virtual radiative correction is given by [69]:

ηvirt =
eδ

0
R
+δver

(1 − δvac)2
, (4.4)

where:

δvac =
αem

3π

[
ln

(
Q2

m2
e

)
− 5

3

]
,

δver =
αem

3π

[
3

2
ln

(
Q2

m2
e

)
− 2 +

π2

6
− 1

2
ln2

(
Q2

m2
e

)]
,

δ0
R =

αem

π

[
S p

(
cos

θe

2

)
− π

2

3
+

1

2
ln

(
Q2

m2
e

)]
,

(4.5)

where αem is the electromagnetic fine-structure constant, δvac is the vacuum photon

polarization correction, δver is the vertex radiative correction and δ0
R

is the finite part of the

radiative correction corresponding to soft photon emission [69].

The virtual radiative effects do not modify the kinematics of the reaction [4] and they

can be corrected for by applying a constant correction factor for each kinematic.
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4.4 The Event Generator

As shown in the schematic in figure 4.3, the ep→ epπ0 reaction can be divided into 2

parts. The first part is called the leptonic reaction which is describes the emission of the

virtual photon. The second part is the hadronic part which handles the recoil proton and

the production of the pion.

We generate the leptonic reaction first by uniformly generating events along the full

target length in a solid angle larger than the real acceptance of the HRS. A reaction vertex

is generated first and then radiative corrections are applied considering the material the

electron has passed through and the thickness of the target material up to the vertex point.

At the vertex, the scattered electron is generated. The electron horizontal angle θe is then

generated in such a way that it covers a wider range than the real horizontal acceptance of

the HRS. After that we uniformly generate the Q2 of the reaction in the following range:

Q2 ∈
[
4 · Eext

v · pmin · sin2
(
θmin

2

)
; 4 · Eext

v · pmax · sin2
(
θmax

2

)]
, (4.6)

with Eext
v being the incident electron energy corrected for external radiative effects,

pmin, pmax, θmin and θmin are the limits of the scattered electron’s momentum and horizontal

angle. The momentum acceptance [pmin, pmax] is defined to be 5.5% around the HRS

central momentum instead of the nominal 4.5%. The electron horizontal acceptance (θmin

and θmax) is defined to be 60 milli-radians instead of the nominal 28 milli-radians.

Once the reaction Q2 is generated, the maximum limit on the Bjorken-x variable is

then calculated according to:

xlim
B =

Q2

(mp + mπ)2 − M2 + Q2
, (4.7)

where mp and mπ are the masses of the proton and the pion. The requirement is that

the reaction invariant mass should be at the minimum equal to the combined masses of
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these two particles for the reaction to be physically possible. xB is then generated

uniformly between limits defined by:

xmin
B = Max

(
Q2

2Mp(Eext
v − pmin)

, 0.05

)
,

xmax
B = Min

(
Q2

2Mp(Eext
v − pmax)

, xlim
B

)
,

(4.8)

The generation of Q2 and xB is then followed by the simulation of internal real

radiative corrections. The azimuthal electron angle φe is then generated to be wider than

the HRS vertical acceptance and used to rotate the scattered electron. The scattered

electron is then simulated up to the entrance window of the HRS. The GEANT4 toolkit

handles the transport and the associated external radiative corrections.

Next we simulate the hadronic part in the center of mass of the virtual photon-proton

system. We generate the squared momentum transfer to the proton (t) uniformly between

tmin and tmax:

tmin = −Q2 2(1 − xB)(1 −
√

1 + ǫ2) + ǫ2

4xB(1 − xB)
, (4.9)

tmax is fixed at -3 GeV2 for all events. We then compute the 4-momentum vectors of

the final state particles according to the π0 production kinematics. Once calculated, the

4-vectors are then boosted in the laboratory frame and are rotated around the virtual

photon by the angle φπ0 generated uniformly in [0;2π]. The decay of the π0 is isotropically

generated in its rest frame and the decay products boosted in the laboratory frame. Finally

all particles are rotated around the beam axis in order to simulate the vertical acceptance

of the HRS. We finally compute the phase space, which is different for each event, as

follows:

Γπ0 = ∆Q2 × ∆xB × ∆t × ∆φπ0 × ∆φe, (4.10)

where only ∆φe (=2 · π) is a constant for all events.
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Figure 4.3: A schematic flow of the Monte-Carlo simulation.

4.5 Calibration and Smearing of Monte-Carlo Simulation

The energy and angular resolution of the calorimeter are difficult quantities to

simulate. A full simulation of the energy deposited in one PbF2 block read out by a DVCS

photomultiplier tube showed that a 1 GeV photon hitting the middle of the front face of a

block produces 1000 photo-electrons [4] and basically explains the energy and angular

resolution measured when performing the elastic calibration (see section 3.4.2). In
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practise, the number of photo-electrons deposited in the blocks per GeV of incident energy

depends on the noise level, for example how close the calorimeter is from the target or the

exit beam line. It also depends on the radiation dose accumulated on each block: blocks

lose transmission when they accumulate radiation. This effect depends on the block as it

seems to be related to the presence of defects in the crystalline structure. Leakage between

the different blocks also modifies the relationship between the total energy of the

incoming photon and the total energy measured by the different calorimeter blocks. All of

these effects result in the measured energy being lower than the actual energy and the

missing masses being higher than the physical rest masses. To correct for these effects, we

chose first to simulate a ”perfect” energy deposition and then perform both a smearing and

calibration based on the resolution and the energy calibration of the data.

4.5.1 Smearing procedure

The resolution of the reconstructed proton mass and the measured photon energy is

dominated by the calorimeter’s energy resolution which depends on the position of impact

on the face of the calorimeter: blocks at different distances from the beamline experience

different levels of noise. Therefore, the calorimeter was divided into 49 partially

overlapping areas to perform a ”local” smearing for each area. To support interpolation of

the calibration coefficients around the edges of the calorimeter, eight more points were

added. We take the four-momentum vector of each photon and apply the following

smearing-calibration transformation [46]:



qx

qy

qz

E



−→ Gaus(µ, σ) ×



qx

qy

qz

E



, (4.11)
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where µ is a calibration parameter correcting for the imperfections of the simulation

in estimating the photon energy compared to the experimental data and σ is the smearing

parameter accounting for the calorimeter resolution. These parameters were obtained by

performing a χ2 comparison of both the reconstructed proton mass and the measured π0

mass between the data and the simulation. The parameters were adjusted until the best

match between data and simulation was obtained. Since the smearing procedure was done

for only 49 areas (plus 8 on the edges), an interpolation algorithm was used to smear data

points which hit the calorimeter away from the centers of these areas. Figures 4.4 show

the calibration and smearing parameters as a function of position on the calorimeter face.

Figure 4.5 shows the angular resolution of the calorimeter as a function of position. The

resolution can be seen worse close to the beam as a result of a high accidental rate. A

comparison of the reconstructed proton mass and the π0 mass before and after the

smearing is shown in figures 4.6 and 4.7, respectively.
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Figure 4.4: The position dependent calibration coefficient µ (in GeV) shown on the left

panel and the smearing parameter σ (GeV) on the right panel.
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Figure 4.6: Spectrum of the π0 production missing mass (ep→ eγγX) of the Monte-Carlo

simulation compared to data. Left: Before the smearing and calibration procedure. Right:

After calibration and smearing procedure.
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4.6 Fitting procedure and cross section extraction

We extract the cross section by comparing the number of experimental events to a

prediction by a Monte-Carlo simulation. We use the parametrization of the π0 production

cross section described in section 1.3.3.3 with the Monte-Carlo simulation to extract the

different response terms to the cross section. This method brings two advantages with

it [4]:

1. It integrates the kinematic dependencies over the entire acceptance of the

experimental geometry.

2. It corrects for bin migration caused by the resolution effects of detectors.

4.6.1 Procedure

Let us define two types of binning:

• Reconstructed bins: based on kinematic variables as reconstructed by the detectors.

• Vertex bins: based on kinematic variables at the reaction vertex. Variables at the

vertex can only be accessed in the simulation.
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If there were no radiative and detector resolution effects, the reconstructed and vertex

kinematics would be the same. To extract the cross section, we need both the vertex and

reconstructed kinematic variables. As we know both the reconstructed and vertex

variables in the simulation, we can construct a bin migration matrix Krv whose elements

are the probabilities for an event to belong to the vertex bin v and the reconstructed bin r.

Defining Nr as the total number of events in reconstructed bin r, we have:

∀r Nr =

V∑

v=1

KrvNv, (4.12)

where Nv is the number of events in the vertex bin v. Nv is related to the cross section:

Nv = L
∫

Φv

d4σv

dΦ
dΦ, (4.13)

where dΦ is the four-fold phase-space factor (dQ2 dxB dt dφπ). We can then re-write

equation 4.12 as follows:

Nr = L
V∑

v=1

Krv

∫

Φr
v

d4σv

Φ.
dΦ. (4.14)

Assuming a cross section which is stable over the space Φv, the previous equation can

be written as:

Nr =

V∑

v=1

Krv

(
L

∫

Φr
v

dΦ

)
× d4σv

dΦ
(4.15)

We then use the simulation to define and compute the matrix Krv by performing the

integration in equation 4.15 above and we get the following result:

Krv =
∑

i∈r∩v

Γi
MC

Ngen

, (4.16)

where i is an event in reconstructed bin r and vertex bin v, Γi
MC

is the phase-space

factor and Ngen is the number of generated events in the simulation.
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Consider the parametrization of the π0 cross section introduced by equation 1.40, it

can also be compressed into the form:

d4σ

dQ2dxBdtdφ
=

N∑

n=1

Γn(E,Q2, xB, φ)Xn, (4.17)

where Γn is a known function depending on the kinematic variables and Xn is a

column vector of the cross section parameters we want to extract. In our case we can

extract 4 parameters as mentioned in the introduction of this section, therefore, N=4 and

Xn = {σT + ǫ, σTT , σLT , σLT ′}. We can now use equation 4.17 in equation 4.14 to connect

the number of reconstructed events to the cross section parameters Xn:

Nr =

V∑

v=1

N∑

n=1

Kn
rvXn

v . (4.18)

The migration probability matrix also takes the form:

Kn
rv =

∑

i∈r∩v

Γn(E,Q2, xB, φ)
Γi

MC

Ngen

(4.19)

An example of the migration probability matrix for the first term in the cross section

parametrization of equation 1.40 is shown in figure 4.8.

We can now construct a χ2 which will be minimized to extract Xn:

χ2 =

R∑

r=1

(
N

exp
r − NMC

r

σ
exp
r

)2

, (4.20)

where R is the total number of experimental bins, N
exp
r represents the number of

events in experimental reconstructed bin r with the error σ
exp
r . NMC

r is the number of

events in simulation reconstructed bin r.

The coefficients X̄n are then defined as the values of Xn which minimizes the χ2 of

equation 4.20:
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Figure 4.8: The migration probability matrix for the first term in the cross section

parametrization of equation 1.40, shown here for Kin36 1. The horizontal axis shows the

binning in the momentum transfer to the proton at the vertex (tv). The vertical axis shows

binning in the reconstructed momentum transfer (tr) as a function of binning in the angle

between the hadronic and the leptonic planes (φ). Each tr bin is divided into 12 φ bins. The

dense diagonal is the case where both the vertex and reconstructed kinematics fall in the

same t bin and the off-diagonals are cases where tr
, tv (bin migration cases).

0 = − 1

2

χ2

∂Xn
v

∣∣∣∣∣∣
X̄

, (4.21)

0 =

V∑

v′=1

N∑

n′=1

A
n,n′

v,v′ · X̄n′

v′ − Bn
v ∀v, n. (4.22)

Equation 4.22 is a matrix system defined by:
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A
n,n′

v,v′ =

R∑

r=0

L2
Kn

rv · Kn′
rv′

(σ
exp
r )2

,

Bn
v =

R∑

r=0

LKn
rv · N

exp
r

(σ
exp
r )2

.

(4.23)

This linear system of equations is solved by inverting matrix A and obtaining the

cross section parameters:

X̄n
v =

V∑

v′=1

N∑

n′=1

[A−1]n,n′

v,v′
n′

v′ , (4.24)

where A−1 is the covariance matrix. The error on each extracted parameter of X̄n is

given by the corresponding diagonal element of A−1:

δσ2
n =

(
A−1)

nn. (4.25)

Taking into accounts the effects of bin migration, the number of simulation counts

per bin can be written as follows:

NMC = L
∑

v,n

Kn
rv · Xn

v . (4.26)
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Figure 4.9: The number of events (from experiment) in a tmin - t bin of Kin36 1 is shown

as the black points with the associated statistical errors. The red histogram represents the

number of events in the same tmin - t bin as estimated by the Monte-Carlo simulation. The

cross section is extracted by minimizing the difference between the experimental number

of events and the estimate of the simulation.
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5 Data Analysis and Results

Having discussed the principle of cross section extraction in chapter 4, we now focus

on the analysis criteria and cuts employed to select the exclusive π0 events from the data.

We then apply the fitting procedure to extract the cross section and present the results. We

present in this chapter the general event selection criteria applicable to all kinematics. We

however present results for kin36 1 only. Analysis for other kinematics (kin36 2 and

kin36 3) is still in progress and we show only preliminary results for these kinematics.

5.1 Selection of Exclusive π0 Events

To select a clean π0 sample we applied a number of cuts starting with the selection of

good electron events based on the spectrometer variables only. Once a good electron was

identified, a second set of cuts was applied to select good π0 events in the calorimeter.

Finally, even after these cuts, our events were still susceptible to some accidental

contamination. Accidentals are uncorrelated (not coming from the same reaction)

electron-π0 events which gave a coincidence even when the basic electron and calorimeter

cuts had been implemented. To remove accidental contamination, we relied on the

excellent spectrometer-calorimeter timing resolution of the experiment.

5.1.1 Electron Selection

5.1.1.1 Particle Identification (PID) Cuts

As mentioned in section 2.3.3, the electron trigger was formed by the coincidence of

a scintillator (S2m) and a gas Cherenkov (CER) detector. The gas Cherenkov was

designed to prevent pions below 4.8 GeV/c from producing Cherenkov radiation by using

a medium (carbon dioxide) with a refractive index such that the pions do not exceed the

speed of light. However, the discriminator threshold of the Cherenkov was set very low

(15 mV) during the experiment and a lot of pion events qualified to form a trigger. In
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addition to that, unlike the scintillators which triggered on any of the sixteen paddles

getting fired, the gas Cherenkov triggered on the analog sum of all the ten PMTs. To

suppress pion contamination, a Cherenkov selection threshold was set at 150 channels, see

5.1.

Once the Cherenkov had been used to suppress pions, our sample was still

contaminated by medium energy electrons also known as δ rays. δ rays are electrons

produced by pions interacting with matter between the target and the detector stack. Since

they are electrons, they produce enough Cherenkov radiation to form a trigger and also

qualify as good electron events according to the gas Cherenkov detector (above 150

Cherenkov channels). To suppress δ rays, we used the electromagnetic calorimeter (also

known as pion rejectors) in the spectrometer. Since electrons will lose all their energy in

the calorimeter, a spectrum of the energy deposited in the calorimeter will distinguish

between pion, δ and good electron events. The bottom panel of figure 5.1 shows the pion

rejector spectrum showing three distinct regions: a low energy peak representing pions, a

high energy peak representing a good electron signal and a flat region of δ rays in between.

5.1.1.2 Vertex and Tracking Cuts

Tracking cuts were also applied to select events with a good track in the VDCs. The

Hall A Analyzer (the standard track reconstruction algorithm developed specifically for

Hall A) is not well adapted to handle events for which more than one track in the VDC

planes is detected. To get around this Analyzer limitation, only events for which one

cluster was detected are selected [75]. To compensate for the removal of events which

even though they were multi-cluster but could still have been good electron events, a

tracking correction (discussed in section 5.3.1) is applied run by run.
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Figure 5.1: Electron PID selection. Top left: the Cherenkov ADC spectrum for π0 events

in kin36 1 without any cuts (blue) and with the pion rejector cuts (red). The minimum

ionization peak (single photon peak) is centered at 150 channels as seen on the blue

spectrum. Top right: the pion rejector sum plotted against the first layer of the pion

rejectors. The dash-dotted lines represent cuts applied to both the pion rejector sum and

the first layer of the pion rejectors. Bottom panel: energy deposited in the electromagnetic

calorimeters (pion rejectors) of the spectrometer without any cuts applied. Three distinct

regions can be seen and selection cuts can be easily applied to suppress pion and medium

energy electron events.
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Cuts along the target length (vertex cuts) were also applied to remove contributions

from events which scattered off the aluminium walls and the end caps of the target cell. To

define the vertex cuts for each kinematic, data taken on a dummy target were used to

locate the position of the target end caps. A distribution of the z-coordinate of the

interaction vertex is shown in figure 5.2.
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Figure 5.2: The z-coordinate of the vertex of the reaction along the target for kin36 1 shown

for runs taken at 5 µA only. The peaks at the edges correspond to events scattered off the

aluminium walls of the target cell. The vertical dotted lines represent the selection cuts

along the vertex, only events between them were selected.
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5.1.1.3 Phase Space and Acceptance (R) Cuts

Finally, ”R-cuts” were applied to select events which passed through a well

understood part of the spectrometer acceptance. The ability to properly reconstruct an

event depends on how well we understand the magnetic field of the spectrometer and the

relevant optics transport matrix connecting the target (reaction area) and the detector

stack. Usually, the magnetic field and hence the acceptance is poorly understood at the

fringes. To complicate matters, the acceptance of the spectrometer is a region defined by 5

kinematic variables. Making a cut in each variable independently would not work because

the variables are correlated. To get around this problem, an R-function was used. The

5-dimensional R-function takes as its arguments variables ytg, φtg, xtg, θtg and δtg, as

defined in figure 5.4 and chapter 4. With these inputs, the R-function returns an R-value

defined as the minimum distance from a test point to the boundary of a polygon in a

plane [72]. In this analysis we used R-cuts implemented by Johnson [76]. A summary of

the applied R-cuts is given in table 5.4 for each kinematic. The phase space of this

kinematic with and without the acceptance cuts is shown in figure 5.3.

Figure 5.3: Phase space of kin36 1 shown for both simulation and the experimental data.

Left panel: with no R-cuts. Right panel: with R-cuts implemented.
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Figure 5.4: Hall A coordinates for scattered electron into the spectrometer and the variables

which define the spectrometer acceptance as shown in Ref. [52]. L is the distance from the

hall center to the entrance of the spectrometer, D is the displacement of the spectrometer

axis from its ideal position. θ0 is the spectrometer central angle setting.

5.1.2 π0 Selection

From the events with a good electron, we then selected events with two clusters

above a set software energy threshold. The software threshold was driven by two factors:

• The hardware threshold set during data acquisition determined the lowest software

threshold we could apply. Looking for clusters below the hardware threshold would

be similar to searching for clusters from background signals.
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• The expected pion energy for a particular kinematic. If a pion decays symmetrically,

each daughter photon will carry half of the pion’s initial energy and we set our

software high enough to stay clear off background and not too close to the expected

photon energy. To accommodate the case of asymmetrical decays, we imposed the

”above threshold” energy cuts just for one of the two photons and loosened the

energy requirement on the second one.

Table 5.1 summarizes the hardware and software thresholds for the different

kinematics. It is worth noting that the hardware threshold was set during DAQ and could

not be changed at the analysis stage.

Table 5.1: Clustering thresholds for the kinematics

Information Kin36 1 Kin36 2 Kin36 3

Hardware threshold (GeV) 1.1 1.48 1.48

Expected π0 energy (GeV) 4.5 5.2 6.5

Software threshold(GeV) 1.2 1.5 1.5

After two cluster events were identified, we applied cuts on both the invariant mass of

the π0 and the missing mass of the recoil proton to isolate the ep→ eγγX reaction. The

invariant mass and the missing mass are correlated because of fluctuations due to the

calorimeter’s imperfections in measuring the energy of the photons, which in turn

correlates fluctuations in the proton missing and the π0 invariant mass. To remove this

correlation, we adapted an empirical approach from M.Mazouz [97]:

M2
X = M2

X

∣∣∣
raw
+C · (mγγ − mπ0), (5.1)
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where M2
X

∣∣∣
raw

and M2
X is the proton missing mass before and after the decorrelation

procedure. mγγ is the ideal π0 invariant mass and mπ0 is the average π0 invariant mass as

measured by the calorimeter. C is an empirical correction factor obtained by studying the

fluctuations of the π0 production missing mass as a function of the energy of the two

photons measured by the calorimeter:

C =
2E1E2

mπ0(E1 + E2)

(
m2
π0 − 2

√
2
(
ν + M − q cos(θπγ∗)

))
, (5.2)

where E1, E2 are the photon energies, ν is the energy transfer to the virtual photon, M

is the proton mass, q is the π0 momentum 4-vector and θπγ∗ is the angle between the π0 and

the virtual photon. Calculation of C was done for each event and an average value was

used for the final correction. Removal of the correlation enabled us to apply one

dimensional cuts on both variables as shown in figure 5.5.
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Figure 5.5: π0 selection based on energy and momentum conservation. Left panel: raw

invariant mass against missing mass distribution for kin36 1. Right panel: the invariant

mass vs. missing mass distribution after corrections and removal of the correlation. The

red box illustrates the selection cuts given in table 5.2.
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Table 5.2: π0 Exclusivity cuts for all kinematics.

Kin36 1 Kin36 2 Kin36 3

M2
X[0.5,1.10] M2

X[0.5,1.15] M2
X[0.5,1.15]

Mπ0[0.116,0.153] Mπ0[0.124,0.146] Mπ0[0.1,0.155]

Eγ >1.1 GeV Eγ >1.5 GeV Eγ >1.5 GeV

Table 5.3: Coincidence Selection Cuts. These are the same for all kinematics.

Cut Name Cut Details

Triple coincidence (Tccc)[-3,3] |tγ1 | <=3,|tγ2 | <=3

Accidental π0 (Tacc)[-11,-5] |tγ1

+ 8| <=3,|tγ2

+ 8| <=3

Accidental photon (Tcac)[-11,-5],[-3,3] |tγ1 | <=3, |tγ2

+ 8| <=3

Triple accidentals (Taaa)[-11,-5],[5,11] |tγ1

+ 8| <=3,|tγ2 − 8| <=2

Calorimeter edge x[-21,12],y[-21,21] 3 cm from edge

5.2 Accidental Subtraction

Our reaction channel is a two-body final state but the π0 decays into two photons. In

the end we detect three particles in coincidence, the scattered electron and the two

photons. To select true coincidence events, we applied additional cuts on the arrival times

of the photons as detailed in table 5.3. Timing corrections discussed in section 3.3 were

implemented such that in the end we have the timing of each photon with respect to the

scattered electron as shown in figure 5.6. True coincidences are within the electron’s

arrival timing window centered around (0,0) in figure 5.6. The time window was set to be

±3 ns wide (chosen to be ±3σ, where σ is the calorimeter-spectrometer corrected time
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resolution, see section 3.3). Unfortunately, the sample in the [-3,3] ns window is still

contaminated by accidentals. To remove contamination by accidentals, we studied several

time windows which describe the time distributions of both photons (the calorimeter) with

respect to the electron (spectrometer), see figure 5.6. There are three contributions to the

accidentals:

NACC
e′γ1γ2.

= Naaa + Ncac + Nacc,

(5.3)

where the subscript a denotes an accidental particle and the subscript c stands for a

particle in coincidence (and the order is scattered electron,”first” and ”second” photon, as

denoted on the left hand side of equation 5.2). Therefore, the right-hand side of equation

can be broken down as:

1. Naaa represents the number of purely uncorrelated signals detected for all three

particles. This is the baseline background of the experiment represented by the

points away from the vertical, horizontal and diagonal bands (in time box R1) in

figure 5.6.

2. Ncac represents the number of events which have the electron in coincidence with

only one photon, the other photon is accidental. This sample is represented by either

the vertical or horizontal band in figure 5.6.

3. Nacc represents the number of events where the two photons are correlated and the

electron is an accidental. These events can be seen occupying the diagonal band,

away from the peak at the origin in figure 5.6.
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To estimate each term that makes up the accidentals, we looked at the following time

windows which were defined to have the same width as our main coincidence window

(also summarized in table 5.3):

• We applied selection cuts to two-photon events in the time range [-11,-5] ns (time

box R3 in figure 5.6) on both photons to get Nacc + Naaa.

• We applied cuts to select one photon in the range [-3,3] ns and another in in the

range [-11,-5] ns (time box R4 in figure 5.6) to get Ncac + Naaa.

• To compensate for a possible double correction for Naaa, we looked at events

passing the analysis cuts but with one photon in the range [-11,-5] ns and the other

photon in the range [5,11] ns (time box R1 in figure 5.6). This gives the number of

pure randoms, Naaa.

To get the final accidental correction, we add the first two results and then subtract

the last one:

Nacc. = R3 + R4 − R1. (5.4)

5.3 Efficiencies

5.3.1 Tracking Efficiency, ηtrack

As discussed in subsection 5.1.1.2, the standard Hall A Analyzer poorly reconstructs

events which have multi-tracks in the VDCs. We excluded these events from the main

analysis but at the same time we don’t know how many of them are actually good electron

events. To correct for that, we introduced a correction factor in the name of tracking

efficiency. To calculate the tracking efficiency, we used PID cuts to select a sample of

good electrons, lets call this sample NPID. Then from NPID , we counted the number of
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Figure 5.6: The time distribution of two photon events with respect to the scattered electron.

Time corrections have been applied such that the time of each photon is relative to the

detection of an electron in the spectrometer. The diagonal structure represents two photons

in coincidence, of which some make up Nacc. The horizontal and vertical bands represent a

case where an electron is in coincidence with one of the two photons only, some of which

make up Ncac. Away from the vertical, horizontal and the diagonal bands, we have purely

random events which are totally uncorrelated, Naaa. The boxes show the time windows

which were studied and their labels indicate the content of each time window in terms of

the possible combinations of triple coincidences in each.

events with good tracks in the VDCs, call this sample NGtrack. The tracking efficiency was

then calculated as:
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ηtrack =
NPID

NGtrack

. (5.5)
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Figure 5.7: The tracking efficiency (left panel) and the livetime (right panel) as a function

of run number. This kinematic was taken at 3 different beam currents and that is visible

from the 3 distinct ”regions” in both the tracking inefficiency and livetime plots.

Since tracking efficiency is current dependent, it was calculated and corrected for on

a run by run basis. The tracking inefficiency (1-ηtrack) for kin36 1 is shown as a function

of run number in figure 5.7. In table 5.4 we show the average tracking efficiency for each

kinematic.

5.3.2 Detector Efficiency

We had dedicated runs to study the efficiencies of different detectors at various points

in time during data taking. To study the efficiency of a particular detector, we excluded it

from a trigger and instead used other detectors around it to form a trigger. As an example,

consider the set of detectors shown by the cartoon in figure 5.8. Suppose we want to

measure the efficiency of detector 2. To do that we exclude detector 2 from the trigger and
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record events which have fired detectors 1 and 3, call this set NA. Out of the recorded

events (NA), we count how many have also fired detector 2, call this set NB. The ratio of

these two numbers gives us the efficiency of the detector:

ηdet. =
NA

NB

. (5.6)

Figure 5.8: A cartoon showing an array of three detectors. To calculate the efficiency of

say detector 2, we exclude it from the trigger and record events which have fired detectors

1 and 3. Out of the recorded events (seen by both 1 and 3), we count how many have also

fired detector 2. The ratio of these two numbers give us the efficiency of the detector.

Since the trigger was formed by S2m and the gas Cherenkov, we discuss the

efficiencies of these detectors in the following sections.
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5.3.2.1 S2m Efficiency

To study the efficiency of the S2m scintillators, we triggered on the coincidence of

the S0 scintillator and the gas Cherenkov and counted NS 0Cer. Then we counted how many

of these events have also fired the S2m, NS 0Cer S 2m. The efficiency is then calculated as

follows:

ηS 2m =
NS 0Cer

NS 0Cer S 2m

. (5.7)

5.3.2.2 Cherenkov Efficiency

To study the efficiency of the gas Cherenkov, we triggered on the coincidence of the

S0 and S2m scintillators and used the pion rejectors to count the number of good electrons

NS 0S 2m. Then we counted how many of these events have also fired the Cherenkov,

NS 0S 2m Cer. We then calculated the efficiency as:

ηCer =
NS 0S 2m

NS 0S 2m Cer

. (5.8)

Both the gas Cherenkov and S2m detector efficiencies are summarized in table 5.4

for all kinematics.

5.3.3 Dead time

The DAQ system (detectors and the associated signal processing equipment) has

some processing time for each event. This means that the DAQ is not always ready to

accept incoming events. The amount of time it takes a detector to process an event is

called the detector’s dead time. During this time, the detector cannot ”see” other events

and a dead time correction factor becomes necessary to account for the number of events

missed while the detector was processing an earlier event. The dead time is an intrinsic

property of a detector but it can also be made worse by a high event rate.
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To measure the dead time, we used a system of counting scalers. A scaler is an

electronic device that records the accumulation of signals that occur too rapidly to be

recorded individually. The scalers count the signals coming straight from the PMTs of the

detectors and because they only count, they have no dead time compared to the other

electronics which process the full data stream of an event. Two types of scalers were used

during the experiment:

• Scalers which are continuously counting, we call these the raw scalers. The raw

scalers give us a count which is not affected by the dead time.

• Scalers which count only when the DAQ is not busy. We call these the live scalers.

From these two scalers, dead time is calculated as:

DT = 1 − Live S caler

Raw S caler
(5.9)

The dead time correction factor is then given by:

ηDT = 1 + DT (5.10)

Both the S2m and gas Cherenkov detectors had individual two copies of raw and live

scalers each. The coincidence of these detectors also had two copies of raw and live

scalers for dead time calculation. Since the dead time is a current (rate) dependent

quantity and since the current would vary within a kinematic, the correction is done on a

run by run basis. An example of the livetime as a function of run number is shown for

kin36 1 in figure 5.7.

5.4 Integrated Luminosity (L)

The integral of the luminosity is given by:



193

Table 5.4: Detector, tracking efficiencies and R-cuts per kinematic. The R-cut represents

the number above which events were accepted. The last column is the virtual radiative

correction factor introduced in chapter 4. The total number of accepted events is multiplied

by the correction factors listed in this table to correct for the detector (or analysis)

inefficiencies.

Kinematic R-cut Tracking (ηtrack) % S2m (ηS 2m) % Cherenkov (ηCER) ηvirtual %

kin36 1 0.1 1.059 1.001 1.001 1.07

kin36 2 0.06 1.062 1.001 1.001 1.071

kin36 3 0.06 1.065 1.001 1.001 1.072

L =
∫

dL
dt

dt =
Q · NA · ρ · l

e · AH

, (5.11)

where:

• Q is the dead time corrected total charge of electrons incident onto the hydrogen

target,

• NA is Avogadro’s number (6.022 · 1023 mol−1),

• ρ = 0.07229 g/cm3 is the density of liquid hydrogen at 18 Kelvin and a pressure of

25 psi,

• l is the target length (15 cm),

• e is the electric charge (1.602 · 10−19 C) and

• AH = 1.0079 g/mol is the atomic mass of hydrogen.

Different runs may have been done at different currents and for different durations.

This means the charge accumulated differs from one run to the next. Therefore, the total
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charge accumulated in a kinematic is calculated on a run by run basis. The dead time

corrections are also calculated and implemented likewise. The dead time corrected

charged for all runs is then integrated to calculate the total luminosity.

5.5 Cross Section

We implemented the extraction method introduced introduced in Chapter 4 to obtain

different response terms of the cross section. The data was divided into 12 bins in the

angle φ (see definition in Chapter 1, Fig 1.13) and 5 bins in t’ = tmin - t. A sample of the

data is shown as a distribution in both φ and t’ in figure 5.9.
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Figure 5.9: Final data sample after the event selection and accidental subtraction criteria.

On the left panel is the data as a function 12 bins of the angle φ and the right panel shows

the data as a function of 5 bins t.

5.5.1 Systematic Uncertainties

Systematic errors originate from instrumental sources and the systematics associated

with the cross section extraction method. Our dominant systematic comes with the

extraction method in the form the missing mass cuts to select exclusive events. Our
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second most dominant is the systematic due to the lack of our understanding of the DIS

cross section (luminosity and spectrometer acceptance) at the point of writing this

document (Summer 2018). We present the different contributions to the systematics below

and later summarize them in table 5.5. The final systematic error is a quadrature sum of all

the listed systematic contributions.

5.5.1.1 DIS normalization systematic

Deep Inelastic Scattering (DIS) was discussed in chapter 1. DIS involves only the

detection of the scattered electron using the HRS. The DIS cross section has been

measured and reproduced over a range of kinematics world wide. Our kinematics also fall

within these world measurements. Experimentally reproducing the DIS cross section with

our data is an indication that we understand the luminosity and electron acceptance by the

HRS. It is for this purpose that DIS data were acquired alongside the exclusive data. The

DIS cross section can be extracted from the data by using the following formula:

d2σ

dxBdQ2
=

N

L ·
1

ΓDIS · ηexp · ηvirt · α
, (5.12)

where N is the number of DIS events passing all analysis cuts, L is the integrated

luminosity, ηvirt is a term correcting for virtual radiative losses, ηexp is a term to correct for

detector inefficiencies and ΓDIS is the phase space through which the DIS events (N) are

accepted in the spectrometer. The ΓDIS term is estimated using a Monte Carlo simulation

which was modified to a DIS simulation from an existing DVCS simulation package. We

want to extract the DIS cross section at our nominal kinematics Q2
HRS and xHRS

B
. However

one needs to consider that the cross section varies within the spectrometer acceptance (as

it does in the case of DVCS/DVMP). One also needs to consider that due to radiative

effects, an event created out of the spectrometer acceptance can be detected by the

spectrometer. This is most likely for DIS than it is for DVCS. To make the extracted cross
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section comparable to the world measurements, a migration probability coefficient, α, that

takes into account both effects, is applied.

As briefly mentioned above, the DIS cross section has been extensively measured for

a wide range of kinematics. The cross section is parametrized by two structure functions

F1 and F2. To compare our cross section to the world measurements (reference cross

section) we used a cross section parametrization that is especially well adapted to our

kinematics. The parametrization we are working with is based on electron-proton DIS

scattering data from JLab’s Hall C [98]. The Hall C data are compatible with our

kinematics because they were measured in the kinematic ranges: 0 ≤Q2 < 8 GeV2 and

1.1 ≤W< 3.1 GeV and the cross section is known to 3% [98].

The DIS cross section extracted from our kin36 1 data was found to be systematically

larger than the reference cross section by 11% as shown in Fig. 5.10. This discrepancy

may be coming from either our extraction or the reference cross section or both. If the

discrepancy comes from the reference cross section, then our source of error may be the

radiative effects convoluted in the α term. Otherwise if the discrepancy comes from our

extraction, our sources of error may be the detector efficiencies, the phase-space factor and

the luminosity calculation. Up to the point of writing this document (Summer 2018), this

discrepancy had not been resolved. To account for the lack of proper understanding of the

cause for failing to reproduce the DIS cross section for our kinematics we apply the

±5.5% systematic to our extracted cross section. To implement this uncertainty, I have

scaled down all the extracted DVMP cross section parameters by 5.5% and then assumed

a ±5.5% normalization systematic to be added in quadrature with other systematics.
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Figure 5.10: The ratio of the experimental DIS cross section (σExp.) in kinematic setting

kin36 1 (of experiment E12-06-114) to the world data (σworld) in similar kinematics, as a

function of run number. On average our DIS cross section is systematically 11% smaller

than the world data. This discrepancy is an indication that we do not properly understand

our luminosity and or the spectrometer’s acceptance yet. We account for this by including

this uncertainty as a systematic as discussed in the text. This figure was adapted from B.

Karki in his report to the Hall A DVCS collaboration [99].

5.5.1.2 Exclusivity cut systematic

Systematics induced by the exclusivity cut arise because of semi-inclusive DIS

(SIDIS) channels which contaminate the exclusivity distribution because of detector

resolutions. Varying the exclusivity cut may vary the cross section because of the SIDIS

channels, which are not simulated but contaminate the final sample of exclusive data. The

amount of SIDIS contamination depends on the value of the missing mass cut.
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The systematic error induced on the cross section by cutting on the proton missing

mass and the π0 reconstructed mass is evaluated by studying the variation of the extracted

cross section terms as a function of the cuts. Our cross section is extracted at the optimal

value of the cuts. To get an estimate of the systematic error, we take the difference

between the cross section extracted with the optimum cuts and the cross section extracted

at the extreme of stability. Figure 5.11 shows the behaviour of one of the extracted cross

section parameters (σLT ) in one tmin − t bin as a function of the cuts in π0 reconstructed

mass and proton missing mass.

5.5.1.3 Summary of systematic errors

A list of the instrumental sources of systematic errors and their magnitudes is

summarized in table 5.5. Since all the errors are independent of each other, they are later

added in quadrature to propagate the final systematic error. The helicity-dependent cross

section term has an additional systematic source from the beam polarization measurement.

Table 5.5: Experimental systematic errors for kin36 1.

Systematic Value (%)

DIS normalization 5.5

Exclusivity cuts 6.6

Electron PID 1.0

Total quadratic (helicity-independent) 8.05

Beam polarization 2.2

Total quadratic (helicity-dependent) 8.34
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Figure 5.11: Propagation of uncertainty on the cross section as a result of cutting on the

proton missing mass and reconstructed π0 mass. The left panel shows a 2 dimensional plot

of proton mass (horizontal axis) and π0 mass (vertical axis). The rectangles in different

colors mark the different cuts used to evaluate the systematic uncertainty. Each rectangle

color corresponds to a point (same color as rectangle) on the right panel. Right panel: one

tmin − t bin of the extracted cross section parameter σLT as a function of the cuts shown on

the left. The blue horizontal dotted line is the line of stability for this cross section, where

the cross section is stable with respect to the value extracted with the optimal cuts. The

green vertical dotted line is point beyond which the exclusivity of the experiment is not

guaranteed. We estimate the systematic in this bin in tmin − t as the difference between the

stable region (blue line) and the extreme physics cut (green line).
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Figure 5.12: The extracted unseparated π0 electroproduction cross section terms σU =

σT + ǫσL. Top panel: results for kin36 (left) and kin36 2 (right). Bottom panel: results for

kin36 3. The blue dashed lines show predictions GK model [73]. The shaded area shows

the systematic precision as summarized in table 5.5 for each extracted cross section term.

5.5.1.4 Results and discussion

Results for the unseparated cross section σU = σT + ǫσL are shown in Fig. 5.12. The

π0 has no charge and is spinless so coupling with a virtual photon is suppressed. The
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Figure 5.13: The extracted transverse-longitudinal interference π0 electroproduction cross

section terms σLT . Top panel: results for kin36 (left) and kin36 2 (right). Bottom panel:

results for kin36 3. The blue dashed lines show predictions GK model [73]. The shaded

area shows the systematic precision as summarized in table 5.5 for each extracted cross

section term.

suppressed coupling to a virtual photon makes π0 production to be free from a pion pole

contribution, which when present boosts σL. Without the pion pole contribution the total

π0 cross section is predicted (by transversity GPD models [73]) to be dominated by σT .

The Goloskokov-Kroll (GK) model [73] prediction for σU is also shown as the

blue-dotted line on the same plot with our kin36 1 result. The prediction of the GK model

for σT and ǫσL is also shown further confirming the dominance of σT (transversity GPDs

participation) over σL (chiral even GPDs participation). The GK model predicts the the
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Figure 5.14: The extracted transverse-transverse interference π0 electroproduction cross

section terms σTT . Top panel: results for kin36 (left) and kin36 2 (right). Bottom panel:

results for kin36 3. The blue dashed lines show predictions GK model [73]. The shaded

area shows the systematic precision as summarized in table 5.5 for each extracted cross

section term.

shape of the unseparated cross section fairly well. However, it fails to reproduce the cross

section amplitude, underestimating it by about 20%. Our data is at a previously

un-explored kinematic and its agreement with transversity GPD models adds to similar

observations with existing data, however at slightly different kinematics. An existing

measurement closest to our kinematic (kin36 1) was done by Bedlinskiy et al. (CLAS

Collaboration) [43] at Q2 = 2.71 GeV2 and xB=0.34 (see figure 1.15 in chapter 1). Even

though at a lower Q2, the CLAS result is in agreement with our data in terms of both the
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Figure 5.15: The extracted polarized response term for π0 electroproduction cross section

σLT ′ . Top panel: results for kin36 (left) and kin36 2 (right). Bottom panel: results for

kin36 3. The shaded area shows the systematic precision as summarized in table 5.5 for

each extracted cross section term.

order and shape of the cross section curve. σT and σL are predicted to decrease with

increasing Q2 and as a consequence their sum is expected to decrease too. Since our

kinematic is at a higher Q2 than that of the CLAS result, our cross section is smaller as

expected. Preliminary results for the other two kinematics (kin36 2 and kin36 3) are also

shown on the same plot. Even though we do not have model comparisons for these results,

they are consistent with a decreasing cross section with an increasing Q2.

Comparison with existing Hall A results is made difficult by the non-overlapping

kinematics and the narrow range in tmin − t for the older results. Comparing the sum of the
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separated σL and σT terms from the most recent Hall A π0 result [11] (see figure 1.17)

with our unseparated result we find that we are in agreement in terms of the expected

behaviour of the cross section magnitude at different Q2 values. Since the results from

Defurne et al. [11] were at a lower Q2 their cross section is larger than ours as expected.

The old results went further to separate the longitudinal and transverse contributions. Our

data does not have the capability to separate the longitudinal and transverse terms of the

cross section making it impossible to extract the independent contribution of each term to

the cross section. Separation of the cross section terms requires that we have two different

virtual photon fluxes’ degrees of polarizations for the same kinematic point, i.e measuring

the same kinematic point at two different beam energies. This could not be done because

the driving experiment was DVCS cross section measurement instead of π0 cross section

measurement.

The transverse-longitudinal interference term (σLT ) is shown in Fig. 5.13 and has a

small but non-zero contribution. Transversity GPD models predict a small contribution by

σL hence a small but positive interference term σLT , as shown in the figure. We however

extract a negative (opposite sign to model predictions) value for this term. Moreover, our

extracted interference term is about 8 times larger than the model prediction in absolute

value. This suggests that the model is underestimating the contribution from the

longitudinally polarized photons (σL). Our result is however consistent with the already

existing Hall A results [11, 42] in terms of the sign of the cross section. We again show

some preliminary results for the other two kinematics (kin36 2 and kin36 3) on the same

plot. Like in the case of unseparated cross section terms, these results are consistent with a

decreasing cross section with an increasing Q2 forσLT .

The transverse-transverse interference term (σTT ) is shown in Fig. 5.14 and we get a

small but non-zero contribution. Since π0 production is predicted by transversity GPD

models to be mainly driven by transversely polarized virtual photons, the σTT term is
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expected to be non-negligible. Compared to the predictions by the GK model, our result is

in good agreement for tmin−t below 0.17 GeV2. Above tmin − t = 0.17 GeV2 the model

overestimates this term. Since σTT is connected to the transversity GPDs through

equation 1.45 this implies that the contribution of the term ĒT is overestimated in the

model (compared to what the data shows). In the case where the handbag formalism was

valid and transverse photons were suppressed, one would expect a negligible σTT

contribution, especially relative to σLT but this is not the case. Compared to previous

results [11, 42] our result is in agreement in terms of both a decreasing cross section

amplitude with increasing Q2 and decreasing tmin − t. Even though the old results have a

narrow range in tmin − t, the trend continues in our wider momentum transfer arm. It is

also interesting to note that in their kinematics, Defurne et al. [11] (see figure 1.17) also

find the that GK model is consistently overestimating the σTT term. Preliminary results

for the other two kinematics (kin36 2 and kin36 3) are also shown on the same plot

(Fig. 5.14). Like in the case of the previous extracted cross section terms, these results are

consistent with a decreasing cross section with an increasing Q2 forσTT .

Lastly the polarized response σLT ′ is shown in Fig. 5.15. This result is consistent

with older Hall A results [42] in that it is found to be positive and increasing with tmin−t.

We do not have a model comparison for this term at the moment and its interpretation in

the GPD formalism is not well established.



206

Conclusion and Outlook

Generalized Parton Distributions are structure functions that describe the correlations

between the longitudinal momentum fraction and the transverse spatial position of quarks

and gluons inside the nucleon. GPDs provide a tool for accessing the 3D partonic

structure of hadrons. By parametrizing the correlations between position and momentum

of quarks and gluons, GPDs bring a wealth of information which form factors and parton

distribution functions cannot independently offer. The connection of GPDs with quark

orbital angular momentum also makes them relevant objects in the pursuit to resolve the

proton spin crisis.

GPDs are measurable through deep exclusive processes like Deeply Virtual Compton

Scattering (DVCS) and Deeply Virtual Meson Production (DVMP). DVCS is the cleanest

tool to access GPDs. DVMP is a complimentary process through which different flavor

GPDs can be accessed. Both DVCS and DVMP get their validation from factorization

theorems which allow us to separate between the hard and the soft scattering scales in a

perturbative QCD approach. It has been theoretically proven that in the Bjorken regime of

large photon virtuality (Q2) and large virtual photon-proton center of mass energy (W),

these processes factorize into a hard-scattering part parametrized by Form Factors, a soft

part of hadronic matrix elements parametrized by the GPDs, and in the case of meson

production, a meson distribution amplitude (DA). DVCS and DVMP results are

interpreted in the handbag approximation (formalism) of asymptotic freedom in

perturbative QCD. According to the handbag formalism, the leading order amplitudes for

these processes are expected to be mediated by longitudinally polarized virtual photons

with a relatively suppressed transverse contribution. It is expected that at leading order

only chiral-even GPDs participate, that is to say helicity flipping structure functions are

not expected to participate until at least next to leading order. Earlier DVCS experiments,
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however at lower photon virtualities Q2, have hinted signs of the validity of the handbag

formalism for photon production. A contradiction of the handbag formalism is observed

with pseudoscalar meson, in particular π0 and π+, production data. The failure of the

handbag formalism in the pseudoscalar case has inspired new models based on the

participation of transversity (chiral-odd) GPDs at leading order through their coupling

with the pion twist-3 Distribution Amplitude.

Experiment E12-06-114 in Hall A of Jefferson Lab was one of the first experiments

to utilize the new 12 GeV upgrade at JLab to extend the kinematic reach of the GPD

program in JLab. A wider energy range was useful in performing measurements as a

function of a range of photon virtualities (Q2) and hence pin down the validity of

generalized parton distributions as the appropriate objects to parametrize the proton

structure in the case of DVCS. In the case of DVMP, in particular π0 production, there is a

need to test the validity of the postulated presence of transversity GPDs at leading order.

This experiment collected data capable of extracting both photon and π0

electro-production cross sections over a range in Q2 (3 to 9 GeV2) and xB (0.35 to 0.6).

With a 15 cm liquid hydrogen target Hall A provides a high luminosity (∼1037 cm−2s−1)

for precision measurements. The experiment used Hall A’s High Resolution Spectrometer

(HRS) to detect the scattered electron with a precision of 10−4 in momentum and a

dedicated DVCS electromagnetic calorimeter to detect photons with a moderate resolution

of 4% in ∆E
E

. The proton was not detected but its missing mass was reconstructed using

the measured electron and photon information.

In this thesis we have analyzed data at (Q2, xB) = (3.1 GeV2,0.35) and extracted the

π0 electro-production cross section. We have extracted the cross section parameters

σT + ǫσL, σLT , σTT and σLT ′ using a cross section parametrization by Dreschsel and

Tiator [35]. Even though factorization has been theoretically proven for longitudinal

photons only at this point, models based on transversity GPDs have been proposed and the
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cross section results are confronted with one such model for interpretation. Compared to

predictions with transversity GPD models by Goloskokov and Kroll (GK) [73] we find

that the model fails to describe the data for all extracted parameters. Concerning the

unseparated structure function term σT + ǫσL, the model predicts the shape and the order

of magnitude well but it fails to predict the magnitude of the cross section,

underestimating it by about 20%. Concerning the structure function σTT , the model

predicts both the shape and amplitude of the cross section well for low values of tmin − t

(< 0.17 GeV2) and fails above this point. The last term compared to the model is σLT and

it is found to be in total disagreement with the data in terms of both the sign and the

magnitude of the cross section. Even though the models do not convincingly describe the

data, the fact that the unseparated cross section extracted from the data is larger than that

predicted by the leading-twist handbag approximations means σL is indeed small

compared to σT . This conclusion can also be made just from comparing the cross sections

σT + ǫσL, σTT and σLT . This presence of a dominant σT over σL is a further confirmation

that indeed the the pion twist-3 Distribution Amplitude couples with transversity GPDs.

Our result shows some further hints that the DVMP transition is strongly mediated by

transversely polarized virtual photons. This is in contradiction with the predictions of the

handbag formalism of a dominant longitudinally polarized virtual photon mediation and

from this we can conclude that we are still far from reaching the Bjorken regime for π0

production. Our result is also compatible with existing measurements (from both Halls A

and B of JLab) in terms of the shapes of the cross section curves, the size of the cross

section and comparison with transversity models. The limitation of our result is that the

data lacked the capability to separate the individual longitudinal σL and σT contributions

to the cross section. In addition to quantifying the magnitude of each term, especially

relative to the other, a separation of σL and σT would allow us to further test the scaling of

these terms against the predictions of the handbag approximation. These terms are
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predicted to scale as Q−6 for σL and Q−8 for σL once we reach the asymptotic freedom

regime.

Two more data points were acquired at the same xB but with a higher Q2 of 3.5 and

4.47 GeV2. Analysis for these two points is still in progress and we have only shown some

preliminary results in this document. Once all the three Q2 points analyzed we look

forward to further tests of the handbag formalism for π0 production. In addition to these

data points, more data was taken at the xB values: 0.48 and 0.6. These points were also

scans in Q2. Analysis of these data is also being done by a graduate student colleague and

once analyzed, these data will also provide further test add to the wealth of knowledge and

development of GPD models.

In the future, large acceptance vector meson electro-production cross section

measurements with CLAS12 in Hall B of JLab are scheduled to collect data with the 12

GeV upgrade. These measurements will extend DVMP cross section data to perform a

longitudinal-transverse cross section separation and evaluate the contribution of the

transverse photons in the transition. With its large acceptance, CLAS12 is also going to be

helpful in understanding other puzzles in the meson production channels such as the low

W, ρ0, ω cross section data [36]. The CLAS12 data will be measured in the valence quark

regime, investigating kinematic points with xB from 0.1 to 0.8, with Q2 scans above

resonance to 12 GeV2.

Precision pseudoscalar meson cross section measurements are also scheduled to

collect data with the JLab 12 GeV upgrade in Hall C using the High Momentum

Spectrometer (HMS) and the Super High Momentum Spectrometer (SHMS) pair. These

measurements are expected to run in the Fall of 2018. The data from these measurements

will be useful in performing a longitudinal-transverse cross separation of the kaon

electroproduction cross section and studying the scaling mechanism in the kaon
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production channel. This experiment will also help understand the role of strangeness in

GPD studies and the kaon form factor [100].

The Neutral Particle Spectrometer (NPS) collaboration is set to perform both DVCS

and π0 cross section measurements in Hall C of the 12 GeV upgraded JLab facility. The

experiment will utilize the existing high momentum spectrometers in Hall C and an

electromagnetic calorimeter (NPS) designed to measure high energy photons in a high

background environment. The NPS will perform high precision measurements of the

DVCS cross section in a wide kinematic coverage enabled by both the 12 GeV upgrade

and the high momentum acceptance spectrometers [36]. Even though the main objective is

to measure DVCS cross sections, π0 electroproduction cross sections will also be

measured and a longitudinal-transverse separation will be performed to test scaling

properties [101].

The 12 GeV upgrade at JLab only offers DVMP measurement opportunities at the

valence quark regime. To achieve a more complete partonic description of nucleon

structure we also need to explore gluon and sea quark GPDs. The current JLab

infrastructure does not have the necessary center of mass energy to reach the sea quark

and gluon regime. The proposed Electron-Ion Collider (EIC) will be designed to reach a

high center of mass energy and avail opportunities to study the role of gluons and sea

quarks in determining nucleon structure and the accompanying dynamics. One example is

the possibility to study exclusive ρ0 and J/ψ production at high Q2. This could open a

window to disentangle the singlet quark and gluon GPDs and test QCD evolution [36].

The EIC will also provide opportunities to measure two mesons with a large rapidity gap

between them and this could be an interesting tool to investigate GPDs for transversely

polarized quarks [36, 102].
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Appendix A: Preliminary π0 Electroproduction Cross

Section for Kin36 1

In this section we show the results of the minimization procedure to extract the cross

section. We have divided the data into five bins in tmin − t and a further twelve bins in the

angle between the hadronic and lepronic planes φ. For each bin in tmin − t we show on the

left panel the extracted total cross section as a function of φ together with a fit to the cross

section. On the right panel we show a comparison of the experimental data and the

prediction by the simulation.
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Figure 5.16: The total (unpolarized) cross section in each of the tmin − t bins as a function

of φ. The left panel shows the total cross section and the right panel shows a comparison

of the experimental data and the number of events estimated by the simulation in each bin.

Errors are statistical only.
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Appendix B: Propagation of systematic errors induced by

exclusivity cuts

In this section we show the results of the procedure to propagate systematic

uncertainties due to the exclusivity cuts. For each extracted cross section term, we varied

the exclusivity cuts and determined points at which the cross section started to vary

significantly from that extacted with the “optimal” cuts. The different colors (or points) in

each plot correspond to the exclusivity cuts demontrated in Fig. 5.11.
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Figure 5.17: Extracted cross section parameter σU = σT + ǫσL as a function of bins in tmin

- t and cut in missing mass.
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Figure 5.18: Extracted cross section parameter σT L as a function of bins in tmin - t and cut

in missing mass.
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Figure 5.19: Extracted cross section parameter σTT as a function of bins in tmin - t and cut

in missing mass.
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Figure 5.20: Extracted cross section parameter σT L′ as a function of bins in tmin - t and cut

in missing mass.
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