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Introduction

An elementary particle is a particle whose substructure is unknown, thus it is unknown
whether it is composed of other particles. Historically, the atom constituent particles
(electrons, protons and neutrons) were all regarded as elementary particles. However,
with the discovery of the magnetic moment of the proton [1], it became clear that the
proton did not belong to this category. With further experimentation, more evidence was
found that protons and neutrons, as well as all hadrons, were composed of other particles,
and had an internal structure [2], [3]. The first evidence for quarks as real constituent
elements of hadrons was obtained in late 1967, when the first of a long series of exper-
iments on highly inelastic electron scattering was started at the two mile accelerator at
the Stanford Linear Accelerator Center (SLAC) [4]. The raw counting rates were much
higher than it had been expected in the deep inelastic region, where the electron imparts
most of its energy to the proton. The experiment showed that the probability of deep
inelastic scattering decreased much more slowly with the invariant momentum transfer
to the proton, than that for elastic scattering [5]. A way to interpret this unexpected
behavior was that the electrons were hitting some kind of hard core inside the target
protons. The first evidence for gluons came in three jet events at PETRA [6].

In the summer of 1973 physicists at Harvard and Princeton demonstrated that in cer-
tain gauge theories the force between the quarks could become relatively weak at short
distances, a behavior known as asymptotic freedom [7], which causes bonds between parti-
cles to become asymptotically weaker as energy increases and distance decreases. Another
property of the interactions between quarks, known as confinement, states that the force
between quarks does not diminish as they are separated. Because of this, when two quarks
become separated, as happens in particle accelerator collisions, at some point it is more
energetically favorable for a new quark-antiquark pair to spontaneously appear, than to
allow the distance to extend further. Although analytically unproven, confinement is
widely believed to be true because it explains the consistent failure of free quark searches.
There is no known phase-transition line separating these two properties. Confinement
is dominant in low-energy scales but, as energy increases, asymptotic freedom becomes

8



Introduction 9

dominant. These interactions between partons, quarks and gluons, are described by the
quantum chromodynamics (QCD) theory.

Nowadays, Deep Inelastic Scattering (DIS) continues to offer a path to extract new
information on the hadronic structure, and consequently, on the unknowns of how QCD
works. The experiment this thesis is based on, Jefferson Lab E07-007 [8], seeks to exploit
this kind of process, and more specifically, the Virtual Compton Scattering (VCS) process,
which is an exclusive reaction of DIS. VCS consists in the production of a real photon off
the nucleon, when scattered by a virtual photon,

γ∗ + p→ γ + p′.

This kind of reactions, in a certain kinematic regime known as Deeply Virtual Compton
Scattering (DVCS), can provide interesting information about a new class of quark and
gluon matrix elements, called Generalized Parton Distributions (GPDs). GPDs correlate
the transverse spatial distribution of the struck parton (quark or gluon) with the light-
cone momentum fraction of the parton in the target. This provides us with information
about spatial and momentum distributions of partons within the nucleon, which helps us
understand how the behavior of partons conferes the characteristics of the nucleon.

Due to the small cross section of DVCS (of the order of nb), in order to conduct these
kind of experiments it is necessary to make use of facilities capable of providing high beam
intensities. One of these facilities is the Thomas Jefferson National Accelerator Facility
[9], where the experiment JLab E07-007 [10], “Complete Separation of Virtual Photon
and π0 Electroproduction Observables of Unpolarized Protons”, took place during the
months of October to December of 2010. I started my collaboration with the experiment
several months after the data acquisition. Here I present my work on the data analysis
as well as the computed cross sections of the studied reaction.

• Chapter 1 is a theoretical introduction to the study of the nucleon structure, re-
viewing the concepts of form factors and parton distributions through elastic and
inelastic processes. The computation of the photon leptoproduction cross section is
described in detail, as well as the goals of experiment E07-007.

• Chapter 2 is a description of Jefferson Lab main characteristics, focusing on the
experimental Hall A, where the experiment took place, and its instrumentation. The
experimental setup along with the kinematics employed during data acquisition can
be found in this chapter. Special detail is given to the electromagnetic calorimeter,
the device on which most of the work of this thesis is based on.

• Chapter 3 describes the analysis of the data stored by the electromagnetic calorime-
ter, with the purpose of obtaining the kinematic variables of the real photons re-
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sulting from DVCS reactions. This chapter also includes the process of calibration
of this apparatus as well as the computation of its energy and angular resolution.

• Chapter 4 describes the selection of events from stored data, the applied cuts to
kinematical variables and the background subtraction. Also, the process of extrac-
tion of the necessary observables for computing the photon leptoproduction cross
section is described, along with the main steps followed to perform the Monte Carlo
simulation used in this computation. The resulting cross sections are shown at the
end of the chapter.





Chapter 1
Deeply Virtual Compton Scattering

The study of the inner structure of hadrons can be tackled mainly through elastic or
inelastic scattering. On one hand, elastic processes lead us to nucleon form factors, the
modification of the cross section due to the finite size of nucleons. On the other hand,
deeply inelastic processes (DIS) lead us to Parton Distribution Functions (PDFs), which
in the framework of the parton model can be interpreted as probability densities of finding
a parton with a certain longitudinal momentum fraction. Both approaches are comple-
mentary, but bear similar drawbacks. The form factors do not yield direct information
about the momentum of the hadronic constituents, whereas the momentum distribution
does not give information on their spatial location. Quantum-mechanically, the phase
structure is totally washed out as well. If we want to unify both concepts (momentum
and spatial distributions) we must resort to Generalized Parton Distributions (GPDs),
and we do so by studying exclusive processes of DIS like Deeply Virtual Compton Scat-
tering (DVCS). GPDs correlate the spatial distribution with the light-cone momentum
fraction of partons within the nucleon.

The easiest way to access these GPDs is through DVCS. This process can be expressed
as the scattering of an electron by a proton by means of a virtual photon with the result
of the scattered initial particles plus a real photon,

p+ e→ p′ + e′ + γ (1.1)

In this theoretical introductory chapter, I will review elastic and inelastic scattering
processes, how do they correlate to form factors and PDFs respectively, as well as intro-
duce DVCS reactions and their linking to GPDs. Then I will move on to give the steps
for the computation of the (p+ e→ p′+ e′+ γ) cross section, including the Bethe-Heitler
contribution, in order to establish the relation between cross section and GPDs. Also the
goal of the experiment JLab experiment E07-007 will be given through this description.

12



Deeply Virtual Compton Scattering 13

1.1 Elastic scattering: form factors

Electron elastic scattering on the proton (e + p → e′ + p′) provides us with information
about charge and magnetism distribution and consequently about space distribution of
the nucleon components. The mathematical tools employed in this study are the so called
form factors, which relate our cross section to that of a point like charge.

In 1911 Rutherford developed a scattering formula in the limit where the target recoil
is neglected and the scattered particle is non-relativistic. He did so by studying scattered
alpha particles on a gold foil. But the formula works as well for electrons with a kinetic
energy EK � me. He wrote the cross section as [11](

dσ

dΩ

)
Rutherford

=
α2

16E2
Ksin

4

(
θ

2

) , (1.2)

where α is the fine-structure constant. For the relativistic case we have to turn to the so
called Mott Scattering, where E � me. Here again the target recoil is neglected,(

dσ

dΩ

)
Mott

=
α2

4E2sin4

(
θ

2

)cos2

(
θ

2

)
. (1.3)

The cos2(θ/2) term comes from the overlap between initial/final state electron wave-
functions with spin 1/2. So far we have described the scattering cases for point like
targets. If we consider the scattering of an electron due to an extended charge distribution
(Fig. 1.1) our cross section will be modified by the form factor F (∆) [12], which depends
on the momentum transfer to the nucleon ∆ = p− p′,

k

q = k’ − k = (    , 

k’ = (    , E’)k’k = (    , E)

ν)q

Figure 1.1: Scattering of an electron by a nu-
cleon. The exchange of a photon is involved
in the process.

Figure 1.2: Nucleon charge distribution as a
function of the nucleon radius in the infinite
momentum frame pz →∞.
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dσ

dΩ
=

(
dσ

dΩ

)
point

|F (∆)|2 -
dσ

dΩ
=

α2

4E2sin4

(
θ

2

)cos2

(
θ

2

)
|F (∆)|2. (1.4)

For unpolarized electrons on a static spinless target, the form factor is described as the
Fourier transform of the charge distribution ρ(r),

F (∆) =

∫
ρ(r)ei∆rdx3 with

∫
ρ(r)dr3 = 1. (1.5)

Therefore, by measuring the form factor we have access to the charge distribution (Fig.
1.2. Form factors can be defined by the matrix element between the nucleon states with
different four-momenta of the quark electromagnetic or weak current. Using Lorentz
invariant discrete symmetries and the spin 1/2 nature of the proton, form factors (FFs)
can be expressed in terms of vector and axial-vector QCD local operators in space-time
coordinates as

〈p′|ψq(0)γµψq(0)|p〉 = F q
1 (∆2)N(p′)γµN(p) + F q

2 (∆2)N(p′)iσµν
∆ν

2MN

N(p),

〈p′|ψq(0)γµγ5ψq(0)|p〉 = Gq
A(∆2)N(p′)γµγ5N(p) +Gq

P (∆2)N(p′)γ5
∆µ

2MN

N(p).
(1.6)

γ∗

p

t

 
FFs

AP21

p’

F ,F ,G ,G (t)

Figure 1.3: Elastic scattering, one parton interaction. t=∆2.

Where F q
1 and F q

2 are Dirac and Pauli form factors, and Gq
A and Gq

P are the axial and
pseudoscalar form factors, respectively. Here, p and p′ are the initial and final hadron
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momentum and ψq is the quark field of flavor q. For the case of the proton, the matrix
element of the first equation in (1.6) is parametrized by two form factors, F q

1 and F q
2 .

At the same time one can parametrize the matrix element of the proton by two different
form factors, one related to the charge distribution in the proton, GE(∆2), and the other
related to the distribution of the magnetic moment of the proton, GM(∆2) which hold
the following relationships with Dirac and Pauli form factors:

GE(∆2) = F1(∆2)− ∆2

4M2
N

F2(∆2),

GM(∆2) = F1(∆2) + F2(∆2).

(1.7)

Taking the latter into account it can be shown that equation (1.3) generalizes to the
Rosenbluth formula [13]:

dσ

dΩ
=

α2

4E2sin4

(
θ

2

)E ′
E

(
G2
E(∆2) + τG2

M(∆2)

(1 + τ)
cos2

(
θ

2

)
+ 2τG2

M(∆2)sin2

(
θ

2

))
, (1.8)

with

τ =
−∆2

4M2
. (1.9)

1.2 Deeply Inelastic scattering: parton distributions

Let us consider the inclusive process e + N → e′ + X, in which an electron is scattered
by a nucleon, resulting in a combination of final particles (X). These processes provide
us with information about parton momentum distribution within the nucleon.

p

q

X

Figure 1.4: Deeply Inelastic scattering.
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In Deeply Inelastic Scattering (DIS) only the scattered electron is detected, therefore,
there is some energy from the initial state that goes undetected at the final state. The
invariant mass of the final hadronic state may be expressed as W :

W 2 = (2ν +M2 −Q2). (1.10)

Here we have the invariants Q2 = −q2 (the virtuality of the photon), and ν = p · q. In
the reference frame where the initial hadron is at rest, ν = M(E ′ − E), where E ′ and
E are the final and initial electron energy, and M is the hadron’s mass. In the case of
the nucleon being a proton, we describe the process as follows: an initial electron e(k)
interacts with the proton in its initial state |p〉 by means of a virtual photon γ∗(q). The
result is a scattered electron e(k′) and the final hadronic 〈X| state. The amplitude of this
process is described by the current-to-current coupling [14],

AX = Lµ(k, k′) 〈X|jµ(0)|p〉 with Lµ(k, k′) =
i

q2
u(k′)γµu(k). (1.11)

Where Lµ(k, k′) stands for the leptonic current. The scattered amplitude AX for electron-
hadron scattering can be split into a leptonic tensor L†µLν and a hadronic tensor W µν ,
rendering the differential cross section for inclusive scattering with the form

σDIS =
α2
em

4π

∑
n

|AX |2(2π)4δ(4)(p+ q − PX) =
α2
em

q4
L†µLνW

µν , (1.12)

where the hadronic tensor reads

W µν =
1

4π

∫
dz4eiqz 〈p|jµ(z)jν(0)|p〉 . (1.13)

p

 

q

X

 

 x 

Figure 1.5: Deeply Inelastic Scattering. The
virtual photon interacts with only one par-
ton.

Figure 1.6: Probabilistic interpretation of a
parton distribution in terms of the fraction
of carried momentum x.
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In the case of the Bjorken limit Q2 → ∞ and ν → ∞ at fixed xB = Q2/(2p · q), it
is possible to make the assumption that the photon is only interacting with one parton,
putting forth the point like nature of quarks and gluons and giving us the possibility
of describing the process by the diagram in Figure 1.5, while dismissing more complex
diagrams. The diagram may be split into two parts. The first part involves the scat-
tering of an electron and a parton, with a fraction moment x, through a virtual photon
interaction, which is calculable through perturbative QCD, and through QED as well.
The second one relates to the behavior of the parton within the hadron and is expressed
through the unpolarized and polarized Parton Distribution Functions (PDFs, f1(x) and
g1(x)). It is possible to correlate the hadronic tensor to the imaginary part of the forward
virtual Compton scattering amplitude T µν [15] by making use of the Optical Theorem.
The amplitude of this exclusive process can be expressed in terms of the PDFs as well.

W µν =
1

2π
ImT µν , (1.14)

where

T µν = i

∫
d4zeiq·z〈p|T {jµ(z)jν(0)} |p〉. (1.15)

γ∗

p

 
PDFs

x 

γ∗

t=0

x

p

f  , g1 1

Figure 1.7: Forward Compton scattering. The virtual photon interacts with a parton
carrying a momentum fraction x.

The points of absorption and emission in Figure 1.7, are separated by a light-like distance,
where the use of light-cone coordinates proves useful. A detailed description of these
coordinates can be found in Appendix A. To support the use of a single diagram we can
calculate the probability for coherent scattering on an n-parton configuration [16],

P ∼
(
|δz⊥|2

πR2
N

)n
∼ 1

(Q2πR2
N)n

, (1.16)

where z⊥ is the transverse separation between the points of absorption and emission
of a parton, in light-cone coordinates, and πR2

N is the transverse area of the nucleon.
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The probability is suppressed by the nth power of the photon virtuality, where power-
suppressed corrections go under the name of higher twists. In a frame where the nucleon
approaches the speed of light in a certain direction, x is the longitudinal momentum
fraction carried by the quark which is struck by the virtual photon. The PDFs represent
therefore the (longitudinal) momentum distribution of quarks in the nucleon and give
us the probability of finding a parton with a momentum fraction x inside the hadron
(Figure 1.6) [17]. The PDF structure functions correspond to QCD operators depending
on space-time coordinates. Precisely, the PDFs are obtained as one-dimensional Fourier
transforms in the light like coordinate z− (at zero values of the other coordinates) as [14]:

f q1 (x) =
p+

4π

∫
dz−eixp

+z−〈p|ψq(0)γ+ψq(z)|p〉
∣∣∣
z+=~z⊥=0

,

gq1(x) =
p+

4π

∫
dz−eixp

+z−〈pS‖|ψq(0)γ+γ5ψq(z)|pS‖〉
∣∣∣
z+=~z⊥=0

.

(1.17)

Where S‖ is the longitudinal nucleon spin projection. At this point we are able to relate
our hadronic tensor to the PDFs, but first, we introduce the structure functions through
the decomposition of the hadronic tensor in independent Lorentz tensors in a more detailed
expression for (1.13). For the spin one-half target W µν can be expressed as [14]:

W µν = −
(
gµν − qµqν

q2

)
F1(xB,Q2) +

1

p · q

(
pµ − p · q

q2
qµ
)(

pν − p · q
q2

qν
)
F2(xB,Q2)

− i

p · q
εµνρσqρsσg1(xB,Q2)− i

p · q
εµνρσqρ

(
sσ −

s · q
p · q

pσ

)
g2(xB,Q2).

(1.18)

Using the latter expression we can also rewrite our cross section from (1.12) in terms of
the structure functions. For the spin average case we have:

dσ3
DIS

dxBdydΦ
=

e4

4π2Q2

{
y

2
F1(xB,Q2) +

1

2xBy

(
1− y − y24x2

BM
2

Q2

)
F2(xB,Q2)

}
, (1.19)

where y = Q2/2MExB and Φ is the azimuthal angle between the plane defined by k and
k′, and the plane defined by k and S. There is no significant dependence on Φ, which
cannot even be uniquely defined for inclusive scattering with an unpolarized target. In
the Bjorken limit, the structure functions are expressed in terms of quark distributions.
For instance, the proton polarization-independent structure functions are:

F1(xB,Q2) =
1

2xB
F2(xB,Q2)

=
1

2

∑
q

Q2
q

(
q(xB,Q2) + q(xB,Q2)

)
=

1

2

∑
q

Q2
qf

q
1 (xB,Q2),

(1.20)
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where Qq is the quark charge. We introduced, in eq. (1.20) the spin independent parton
distributions q(x) = f q1 (x) for x>0, and q(x) = −f q1 (−x) for x<0 (antiquarks). This way,
through measuring the structure functions in (1.19) it is possible to have access to the
PDFs. Analogous relations hold for the polarized structure function gq1(xB,Q2), the only
difference is that spin-weighted rather than spin averaged quark parton species enter the
leading order prediction,

gq1(xB,Q2) =
1

2

∑
q

Q2
q

(
∆q(xB,Q2) + ∆q(xB,Q2)

)
=

1

2

∑
q

Q2
qg
q
1(xB,Q2). (1.21)

1.3 Exclusive reactions: DVCS

We have seen how to access parton space distributions through elastic scattering on one
side, and how to access parton momentum distributions through deeply inelastic scat-
tering on the other side. However all this information is not sufficient to describe the
hadronic wave function in detail. To do so we need to study specific cases of DIS (ex-
clusive reactions) which will help us correlate both kinds of distributions. Deeply Virtual
Compton Scattering is one of them (Figure 1.8).

p

t

p’

γ∗
γ

Figure 1.8: Deeply Virtual Compton Scat-
tering. A real photon is emitted as a result
of the scattering.

γ∗ γ

p

t

p’

ξ ξx + x − 

 
GPDs

∼
H,E,H,E (x,  ,t)ξ

∼

Figure 1.9: Handbag diagram for DVCS. The
virtual photon interacts with only one par-
ton.

This scattering process depends mainly on 3 different kinematic variables: the interaction
photon virtuality Q2, its energy at the lab frame ν, and the transferred momentum t = ∆2

(with ∆µ = (p− p′)µ). Since this thesis is based on JLab experiment E07-007, where the
reaction e + p → e′ + p′ + γ was studied, we will refer to that process from now on.
In a similar way as we previously did with DIS, at fixed xB but Q2 and ν high enough
we make the assumption that the virtual photon interacts with a single quark (Handbag
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approximation), this time carrying a momentum fraction x+ ξ (Figure 1.9), which is the
light-cone + momentum fraction. The quark returns to the nucleon carrying a light-cone
+ momentum fraction x− ξ.

γ∗ γ

p

t

p’

ξ ξx + x − 

 
GPDs

∼
H,E,H,E (x,  ,t)ξ

∼
SOFT

HARD

Figure 1.10: Handbag diagram. The hard
part is calculable through perturbative QCD,
and the soft part is described in terms of
GPDs.

Figure 1.11: Probabilistic interpretation of a
Generalized Parton Distribution in terms of
the fraction of carried momentum x and the
nucleon radius.

Figure 1.9 is the leading order diagram. We can as well split the diagram into two sections
(Figure 1.10): the interaction of the scattered electron with a parton (HARD), calculable
through perturbative QCD, and the parton interaction with the proton (SOFT), described
in terms of GPDs. The concept of GPDs was developed as a modern tool to deliver a
detailed description of the microscopic structure of hadrons in terms of their elementary
constituents [18], [19], [20], [21], [22], [23]. This field has been very active in the last
fifteen years, and there are several reviews discussing different aspects of the GPDs [24],
[25], [26], [27], [28], [29], [30], [31], but from now on we will follow the description from
[14], unless noted otherwise. Figure 1.11 shows their probabilistic interpretation in the
infinite momentum frame pz → ∞. The longitudinal momentum fraction x takes values
between 0 and 1 along the z axis, while the charge distribution is shown as a function
of r⊥. GPDs correspond to the Fourier transform of QCD non-local and non-diagonal
operators. “Non-local” since the initial and final quarks are created (or annihilated) at
different same space-time points and “non-diagonal” since the momenta of the initial and
final nucleons are different. Thus, in terms of the vector and axial-vector bilocal quark
currents, GPDs can be expressed as

P+

4π

∫
dz−eixP

+z−〈p′|ψq(0)γ+ψq(z)|p〉
∣∣∣
z+=~z⊥=0

= Hq(x, ξ, t)N(p′)γ+N(p) + Eq(x, ξ, t)N(p′)iσ+ν ∆ν

2MN

N(p),

(1.22)
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P+

4π

∫
dz−eixP

+z−〈p′|ψq(0)γ+γ5ψq(z)|p〉
∣∣∣
z+=~z⊥=0

= H̃q(x, ξ, t)N(p′)γ+γ5N(p) + Ẽq(x, ξ, t)N(p′)γ5
∆+

2MN

N(p).

(1.23)

Here P is the sum of the nucleon initial and final momentum: P = (p+p′). GPDs H and
E correspond with averages over the quark helicity. They are therefore called unpolarized
GPDs. The GPDs H̃ and Ẽ involve differences of quark helicities and are called polarized
GPDs. At the nucleon level, E and Ẽ are associated to a flip of the nucleon spin while
H and H̃ leave it unchanged (Figure 1.12). The four GPDs therefore reflect the four
independent helicity-spin combinations of the quark-nucleon system (conserving quark
helicity). GPDs depend on additional variables compared to PDFs and FFs and they are
a richer source of nucleon structure information.

• In the limit where t → 0 and ξ = 0 in equations (1.22) and (1.23), we retrieve
the spin independent or spin dependent parton distributions q(x), ∆q(x), and their
counterparts for antiquarks q(x) and ∆q(x):

Hq(x, ξ = 0, t = 0) = q(x) H̃q(x, ξ = 0, t = 0) = ∆q(x) for x > 0,

Hq(x, ξ = 0, t = 0) = −q(−x) H̃q(x, ξ = 0, t = 0) = ∆q(−x) for x < 0.

(1.24)

Since the defining equations of E and Ẽ are proportional to ∆µ they decouple in
the forward limit, and therefore, there are no analogous relations to those of H and
H̃ with the quark distributions.

• We can also retrieve the FFs by forming the first moment of GPDs. By integrating
equations (1.22) and (1.23) over x we can correlate the results to equations in (1.6):

∫ 1

−1

Hq(x, ξ, t) dx = F q
1 (t)

∫ 1

−1

Eq(x, ξ, t) dx = F q
2 (t) ∀ξ,

(1.25)∫ 1

−1

H̃q(x, ξ, t) dx = Gq
A(t)

∫ 1

−1

Ẽq(x, ξ, t) dx = Gq
P (t) ∀ξ.

(1.26)

At ξ = 0, the GPD (x, 0, t) can then be interpreted as the probability of finding a
parton with longitudinal momentum fraction x at a given transverse distance (rel-
ative to the transverse c.m.) in the nucleon. In this way, the information contained
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in a traditional parton distribution, as measured in DIS, and the information con-
tained within a form factor, as measured in elastic lepton-nucleon scattering, are
combined and correlated in the GPD description.

Figure 1.12: GPDs and their correspondence to quarks helicity and nucleon spin orienta-
tions.

• The second moment of the GPDs is relevant to the nucleon spin structure. It is
known as Ji’s sum rule [32] and reads:

1

2

∫ 1

−1

[Hq(x, ξ, 0) + Eq(x, ξ, 0)]xdx = Jq ∀ξ. (1.27)
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There exists a (color) gauge-invariant decomposition of the nucleon spin: 1/2 =
Jq + Jg, where Jq and Jg are respectively the total quark and gluon contributions
to the nucleon total angular momentum. The total quark spin contribution Jq
decomposes (in a gauge invariant way) as Jq = 1/2∆Σ + Lq where 1/2∆Σ and Lq
are respectively the quark spin and quark orbital contributions to the nucleon spin.
∆Σ can be measured through polarized DIS experiments. On the other hand, for the
gluons it is still an open question how to decompose the total angular momentum
Jg into orbital angular momentum, Lg, and gluon spin, ∆g, parts, in such a way
that both can be related to observables. The sum rule of equation (1.27) in terms
of the GPDs provides a model independent way of determining the quark orbital
contribution to the nucleon spin and therefore completes the quark sector of the
“spin-puzzle”.

Below there is a summary of the operators and their associated structure functions we
have seen so far, including FFs, PDFs and GPDs [33]:

Operator Nature of the Associated structure functions
in coordinate space matrix element in momentum space

〈p|ψ(0)Oψ(z)|p〉 non-local, diagonal f1(x), g1(x)

〈p′|ψ(0)Oψ(0)|p〉 local, non-diagonal F1(t), F2(t), GP (t), GA(t)

〈p′|ψ(0)Oψ(z)|p〉 non-local, non-diagonal H(x, ξ, t), E(x, ξ, t), H̃(x, ξ, t), Ẽ(x, ξ, t)

Table 1.1: Operators and structure functions. O = γ+ or γ+γ5.

1.4 Deeply photon electroproduction cross section

We describe the differential cross section of the exclusive leptoproduction of a photon, in
the scattering of an electron by a proton. We follow the convention of [34]. The cross
section is written as a function of the final states and including the energy-momentum
conservation in the δ(4) term,

dσ = |T |2 2M2me

4~p~k

Md3~p′

E ′(2π)3

med
3~k′

Ek′(2π)3

d3~q′

2Eq′(2π)3
(2π)4δ4

(
~p+ ~k − ~p′ − ~k′ − ~q′

)
. (1.28)

Where ~p, ~k, ~p′, ~k′ and ~q′ stand for the incoming and scattered proton (p, p′) and electron
(k, k′), and the real photon (q′) four-momenta. |T | stands for the total contribution of
the different amplitudes of processes involved in leptoproduction of a photon from the
nucleon. We now briefly discuss the computation of (1.28) phase space and |T |.
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1.4.1 Phase space

Our cross section is defined in the laboratory frame where ~p = (M, 0, 0, 0) and ~k =

(Eb, 0, 0, Eb) (~k is in the ~z axis). We can use the δ(3) in momentum to integrate over q′,

dσ = |T |2 (2M2me)
2

16ME

d3~p′

E ′(2π)3

d3~k′

Ek′(2π)3

1

Eq′
πδ

(
M + E −

√
M2 + p′2 − |~k′| −

√
|~p+ ~k − ~p′ − ~k′|2

)
.

(1.29)
If we introduce the polar and azimuthal angles, θ and φ, in our differential cross section,
equation (1.29) will now depend on the variables E ′, cos(θp′), φp′ and k′, cos(θk′), φk′ , where

the overline indicates they refer to the frame in which ~k = (Eb, 0, 0, Eb). We can use the
last δ to integrate over φp′ ,

dσ

dE ′dk′dcos(θp′)dcos(θk′)dφk′
= |T |2 (2M2me)

2

32ME

1

(2π)5

1

sin(θp′)sin(φp′)sin(θk′)
. (1.30)

A rotation around the ~y axis must be applied in order to express (1.30) in the reference
frame described by A.V. Belitsky, D. Müller and A. Kirchner in [35], in which ~q1 goes along
the ~z axis. This frame, shown in Fig. 1.13, is employed to perform the decomposition in
Fourier harmonics of the photon electroproduction.

Figure 1.13: Kinematics of leptoproduction in the target rest frame.

The z-direction is chosen counter-along the three-momentum of the incoming virtual pho-
ton. The leptons three-momenta form the lepton scattering plane, while the recoiled
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proton and outgoing real photon define the hadron scattering plane. In this reference
system φ is the azimuthal angle between the lepton plane and the recoiled proton mo-
mentum, and it is related in turn to the photon azimuthal angle ϕγ = φ+ π. The target
polarization three-vector is described by two spherical angles (Θ,Φ), so the angle between
the polarization vector and the scattered nucleon is ϕ = Φ − φ. After applying the ro-
tation we can rewrite our differential cross section to make it depend on the variables
xB, y, |∆2|, φ and ϕ, instead of E ′, k′, cos(θp′), cos(θk′) and φk′ (taking into account the
relationship φk′ = φk′ = ϕ). Then one gets to the five-fold cross section,

dσ

dxBdyd|∆2|dφdϕ
=

α3xBy

16π2Q2
√

1 + ε2

∣∣∣∣(2M2me)T
e3

∣∣∣∣2 with ε =
2xBM

Q
.

(1.31)
Apart from the Bjorken variable xB, the t-channel momentum transfer ∆2, and the lepton
energy loss y, the differential cross section (1.31) depends on the azimuthal angles φ and
ϕ.

1.4.2 Contributing amplitudes

In the energy range of Hall A electron beam, we find a process competing with DVCS
known as Bethe-Heitler (BH). Figure 1.14 illustrates the main contributing diagrams to
|T |. The first diagram corresponds to Deeply Virtual Compton Scattering, in which the
real and the virtual photons couple to quarks in the nucleon, its amplitude being TDV CS.
The other two diagrams come from the “interfering” BH process, in which the real photon
is radiated by the lepton rather than the quark. The BH amplitude will be denoted by
TBH . The superposition principle leads to the presence of an interference term , I, between
these amplitudes in addition to the intensities |TDV CS|2 and |TBH |2,

|T |2 = |TBH |2 + |TDV CS|2 + I. (1.32)

Figure 1.14: Reactions involved in the process (ep→epγ).
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I = T ∗DV CSTBH + TDV CST ∗BH . (1.33)

It is possible to exploit the structure of the cross section as a function of the angle φ
between the leptonic and hadronic planes, to separate up to a certain degree the different
contributions. In the following subsections, I will review the computation of the different
amplitudes and their decomposition in Fourier harmonics depending on φ.

Bethe-Heitler amplitude

In the BH process the resulting photon is emitted either by the incoming or the scat-
tered electron. The BH amplitude is real (to the lowest order in the QED fine structure
constant), and is parametrized in terms of electromagnetic form factors, and reads

TBH =
e3

∆2
ε∗µ(q2)u(k′)

(
γµ

1

/k − /∆
γν + γν

1

/k′ + /∆
γµ

)
u(k)Jν , (1.34)

where Jν = 〈p′|ψq(0)γνψq(0)|p〉 is given in (1.6). The contribution to the cross section
from BH comes from multiplying expression (1.34) by its conjugate. We write this con-
tribution with its explicit dependence on the leptonic and hadronic tensors as:

|(2Mp2me)TBH |2 =
∑
S

(2Mp2me)
2e6

∆4
(−gµµ′)LBHµν L

†BH
µ′ν′ J

νJ†ν
′
, (1.35)

where we sum over initial and final spin states S. In order to decompose our amplitude in
Fourier harmonics, we manipulate the expressions for the leptonic and hadronic tensors
and rewrite the latter one in a way such as all the harmonics will have a similar dependence
with the mentioned form factors:

∑
S

(2me)
2e6

∆4
(−gµµ′)LBHµν L

†BH
µ′ν′ =

e6

4∆4
Tr

[
/k
′
(
γµ

/k − /∆

∆2 − 2k ·∆
γν + γν

/k′ + /∆

Q2 + 2k ·∆
γµ

)
/k

(
γν′

/k − /∆

∆2 − 2k ·∆
γµ + γµ

/k′ + /∆

Q2 + 2k ·∆
γν′

)]
,

(1.36)

∑
S

(2Mp)
2JνJ†ν

′
=

∆2

2
gνν

′
(F1 + F2)2 +

1

2
(pνpν

′
+ p′νp′ν

′
)

[(
F 2

1 −
∆2

4M2
p

F 2
2

)
− (F1 + F2)2

]
+

1

2
(pνp′ν

′
+ p′νpν

′
)

[(
F 2

1 −
∆2

4M2
p

F 2
2

)
+ (F1 + F2)2

]
.

(1.37)
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The φ dependence of the amplitude comes from the term k · ∆, which is related to
cos(φ). The expression for this term as well as those for the whole kinematics used in
these calculations can be found in Appendix B. Finally, the decomposition of the BH
amplitude in Fourier harmonics has the expression [16]:

|(2Mp2me)TBH |2 =
e6

x2
By

2(1 + ε2)2∆2P1(φ)P2(φ)

{
cBH0 +

2∑
n=1

cBHn cos(nφ) + sBHn sin(φ)

}
,

(1.38)
where P1 and P2 are related to the propagators appearing in the BH process:

Q2P1 = (k − q2)2 = Q2 + 2k ·∆,
Q2P2 = (k −∆)2 = ∆2 − 2k ·∆.

(1.39)

It is possible to obtain cBH0 , cBH1 and cBH2 by multiplying (1.36) by (1.37), then identifying
those terms proportional to cos(ϕ) and cos2(ϕ). sBH1 and sBH2 appear when we include
helicity operators. The coefficients of the Fourier decomposition for this term as well as
for the DVCS and interference terms are listed in Appendix C.

DVCS amplitude

The DVCS amplitude corresponds to the diagram depicted in figure 1.10, and is expressed
in terms of the hadronic tensor T µν . This tensor is given by the time-ordered product
of the electromagnetic currents jµ = eΣqQqψqγ

µψq of quarks, having fractional charge
Qq, which is sandwiched between hadronic states with different momenta. The amplitude
reads:

TDV CS =
e3

q2
1

ε∗µ(q2)u(k′)γνu(k)T µν , (1.40)

where we express T µν as [16]:

T µν = −DµρgρσDσνF1 +
1

P · (q + q′)
DµρPρPσDσνF2 +

i

P · (q + q′)
ζµνρσPρ(q + q′)σF̃1

+DµρDσνGρσ +
ξ

P · (q + q′)
(DµρPρDσν +DµσpσDρν)F⊥3ρ +

i

P · (q + q′)
ζµνρσqσF̃⊥3ρ,

(1.41)

where the projection operator and ξ are given by:
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ζµνρσ = εαβρσ
(
gµα −

P µq′α
P · q′

)(
gνβ −

P νqβ
P · q

)
,

Dµν = gµν − qµq
′ν

q · q′
ξ = xB

1 +
∆2

2Q2

2− xB + xB
∆2

Q2

.

(1.42)

By analogy with the terminology used in studies of deeply inelastic scattering, the
functions that appear in the decomposition (1.41) will be called the Compton form factors

(CFFs). Four of these functions, F1,F2, F̃1 and G receive twist-two contributions at their

leading term, while the other two, F⊥3ρ and F̃⊥3ρ, start at twist three. The appearance of
the function G in (1.41) is a consequence of the gluon helicity-flip by two units. It arises
due to nonzero orbital angular momentum in the off-forward scattering. The twist-two
photon helicity-flip amplitude is absent in the handbag diagram due to the conservation
of the angular momentum along the photon-parton collision axis. Since photons are
vector particles, to flip their helicity one needs to compensate two units of the angular
momentum. For the collinear twist-two partonic amplitude, this is only possible by a
simultaneous flip of gluon helicities. Since quarks have spin one-half, their helicity flip
can provide at most one unit of the angular momentum. At leading order, and therefore
not taking into account twist-two photon helicity-flip or twist-three contributions, we are
only interested in the CFFs F1, F2 and F̃1.

F1 =
1

P+
u(p′)

(
γ+Hq +

(
γ+ − (p+ p′)+

2Mp

)
Eq
)
u(p),

F̃1 =
1

P+
u(p′)

(
γ+γ5H̃q +

(p′ − p)+

2Mp

γ5Ẽq
)
u(p).

(1.43)

The CFFs F1 and F̃1 are linear combinations of the functions {H, E , H̃, Ẽ}, which we
will label as CFFs as well. In general, these functions are given by a convolution of
perturbatively calculable coefficient functions and a set of twist-two and twist-three GPDs.
We now redefine our hadronic tensor taking into account that at leading order F2 = ξF1.
The contribution to the cross section from DVCS has the form:

|(2Mp2me)TDV CS|2 =
∑
S

(2Mp2me)
2e6

q4
1

(−gµµ′)LDV CSν L†DV CSν′ T µνT †µ
′ν′ , (1.44)

with
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∑
S

LDV CSν L†DV CSν′ =
1

4
Tr

[(
/k
′
+me

2me

)
γν

(
/k +me

2me

)
γν′

]
= ((−gνν′)k · k′ + kνk

′
ν′ + kν′k

′
ν) ,∑

S

T µνT †µ
′ν′ =

∑
S

(
Dµν

1 D∗µ
′ν′

1 F1F †1 +Dµν
1 D∗µ

′ν′

2 F1F̃ †1 +Dµν
2 D∗µ

′ν′

1 F̃1F †1 +Dµν
2 D∗µ

′ν′

2 F̃1F̃ †1
)
,

(1.45)

where Dµν
1 and Dµν

2 are the combinations of the propagators defined in (1.42).

Dµν
1 = −DµρgρσDσν +

ξ

P · (q + q′)
DµρPρPσDσν ,

Dµν
2 =

i

P · (q + q′)
ζµνρσPρ(q + q′)σ.

(1.46)

To find out the relation of the cross section with the CFFs {H, E , H̃, Ẽ} we use the

equations from (1.43) to resolve the combinations of F1 and F̃1 that appear in the hadronic
tensor shown in (1.45). Only two of these combinations have non-zero results:

∑
S

F1F †1 =
1

(2Mpp+)2

{
8p+p′+HH∗ − 2(∆+)2 (EH∗ + E∗H + EE∗)− ∆2

2M2
p

(p+)2EE∗
}
,

∑
S

F̃1F̃ †1 =
1

(2Mpp+)2

{
8p+p′+H̃H̃∗ − 2(∆+)2

(
ẼH̃∗ + Ẽ∗H̃

)
− ∆2

2M2
p

(∆+)2Ẽ Ẽ∗
}
,

(1.47)∑
S

F1F̃ †1 = 0
∑
S

F̃1F †1 = 0. (1.48)

We use both results found in (1.47) to define a variable which will enclose the dependence
of the amplitude with the CFFs at twist-two level. By doing this, we will be able to
express our cross section in terms of variables which contain the dependence on GPDs at
different twist levels, and decompose it according to their contribution.

∑
S

(2Mp)
2
(
F1F †1 + F̃1F̃ †1

)
=

2

(2− xB)2

{
4(1− xB)

(
HH∗ + H̃H̃∗

)
− x2

B

(
HE∗ + EH∗ + H̃Ẽ∗ + ẼH̃∗

)
−
(
x2
B + (2− xB)2 ∆2

4M2

)
EE∗ − x2

B

∆2

4M2
Ẽ Ẽ∗

}
= 2CDV CSunp (F ,F∗).

(1.49)
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We observe that |TDV CS|2 is bilinear in the CFFs, as opposed to the interference term,
which we will study next. The subscript “unp” indicates our target is not polarized. At
this point we can go back to equation (1.45) and combine the leptonic tensor with the
Dµν

1 and Dµν
2 coefficients, left aside from the hadronic tensor computation, to find the φ

dependence of the DVCS amplitude. Identifying each term, up to leading order, will give
us the following:

∑
S

(2me)
2e6

q4
1

(−gµµ′)LDV CSν L†DV CSν′ Dµν
1 D∗µ

′ν′

1 =
∑
S

(2me)
2e6

q4
1

(−gµµ′)LDV CSν L†DV CSν′ Dµν
2 D∗µ

′ν′

2

= −4Q2

y2
(2− 2y + y2) +

16Q2xB(2− y)

y2(2− xB)
K cos(φ) + ...

(1.50)

where the dots stand for higher twist contributions. Combining equations (1.50) and
(1.49) will give us the structure for the DVCS amplitude in terms of CFFs and φ we are
looking for:

|(2Mp2me)TDV CS|2 =
e6

y2Q2

{
2(2− 2y + y2)CDV CSunp (F ,F∗)

+
8K

2− xB
(2− y)ReCDV CSunp (F eff ,F∗) cos(φ) + ...

}
.

(1.51)

The φ independent term is known as the cDV CS0 coefficient, and it is expressed in terms of

the twist-two CFFs {H, E , H̃, Ẽ}, while the cos(φ) term, cDV CS1 , has a twist-three compo-
nent in its general expression, enclosed in the “effective” CFF, F eff . In our computation
we used that at leading order F eff = −xBF and didn’t include the twist-three component
in the result (see equation in Appendix C (C.16)). It can be shown that (1.51) leads to
the more general expression [16]:

|(2Mp2me)TDV CS|2 =
e6

y2Q2

{
cDV CS0 +

2∑
n=1

cDV CSn cos(nφ) + sDV CSn sin(nφ)

}
, (1.52)

where sDV CS1 arises from the interference of twist-two CFFs with F eff . The Fourier
coefficients cDV CS2 and sDV CS2 , come from gluon transversity. Again, one must include
helicity operators to access sDV CS1 and sDV CS2 . The results for the Fourier coefficients,
presented above, only include contributions up to the twist-three level.
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Interference term

For the phenomenology of GPDs, the interference term is the most interesting quantity
since it is linear in CFFs and thus simplifies their extraction from experimental measure-
ments. It is defined as the combination of the DVCS and BH amplitudes as follows:

I = (2Mp2me)
22<e [TDV CST ∗BH ] =

∑
S

(2Mp2me)
2e6

∆2q2
1

(−gµµ′)2LDV CSν L†BHµ′ν′ T
µνJν

′
, (1.53)

with

∑
S

LDV CSν L†BHµ′ν′ =
1

4
Tr
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(1.54)

Once more we take only into account the contribution at leading order from the CFFs
F1, F2 and F̃1. Dµν

1 and Dµν
2 are the very same combinations of propagators defined for

the DVCS amplitude. In order to simplify the computation, we split the leptonic tensor
into two terms, LIsνµν′ and LIaνµν′ , symmetric and antisymmetric leptonic currents of the
interference amplitude. We define them by the relations:

LIsνµν′ = Tr
[
/k
′
γν/k

(
γν′
(
/k − /∆

)
γµ + γµ

(
/k′ + /∆

)
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,

LIaνµν′ = Tr
[
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′
γν/k

(
γν′
(
/k − /∆

)
γµ − γµ

(
/k′ + /∆

)
γν′
)]
.

(1.55)

Combining these expressions with the hadronic tensor will yield two contributions to the
interference term: one related to F1 and the other to F̃1. Both contain a 1/P1(φ)P2(φ)
factor that will remain in the global factor of the harmonic decomposition of the interfer-
ence amplitude.

I =
∑
S

(2Mp)
2e6

∆2Q2

1

Q4P1(ϕ)P2(ϕ)

{
Dµν

1 F1J
ν′
(
LIsνµν′(Q2 + ∆2) + LIaνµν′((Q2 −∆2) + 4k ·∆)

)
+Dµν

2 F̃1J
ν′
(
LIsνµν′(Q2 + ∆2) + LIaνµν′((Q2 −∆2) + 4k ·∆)

)}
,

(1.56)

where the following relations for the combinations of BH propagators were used:
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1

(k −∆)2
+

1
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(k −∆)2
− 1

(k′ + ∆)2
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.

(1.57)
Additionally, both terms in (1.56) can be independently decomposed into Fourier har-
monics, with a dependence on cos(φ), cos2(φ) and a φ independent term. That is, if we
stop at leading order and don’t include helicity operators:

I =
e6

xBy3∆2P1(φ)P2(φ)

{
cI10 + cI11cos(φ) + cI12cos

2(φ) + ...

cI20 + cI21cos(φ) + cI22cos
2(φ) + ...

}
.

(1.58)

In the last equation we identify the term cI10 as the φ independent term resulting from

the Dµν
1 F1 contribution. The term cI20 results from the Dµν

2 F̃1 contribution. In a more
general way the interference amplitude has the expression as [16],

I =
±e6

xBy3∆2P1(φ)P2(φ)

{
cI0 +

3∑
n=1

cIncos(nφ) + sInsin(nφ)

}
. (1.59)

Here, the + (-) sign stands for the negatively (positively) charged lepton beam. It is very
important to notice that the DVCS amplitude changes its sign when one goes from the
electron to the positron beam, TDV CS|e+ = −TDV CS|e− while the BH process does not,
TBH |e+ = TBH |e−. The coefficients cI0 , cI1 and sI1 arise at twist-two level, while cI2 and
sI2 depend on the effective twist-three CFFs. Coefficients cI3 and sI3 originate from the
twist-two double helicity-flip gluonic GPDs alone (the sIi coefficients also depend on the
electron helicity).

1.5 Experiment goals

As we have seen, the photon electroproduction cross section of a polarized lepton beam of
energy Eb off an unpolarized target is sensitive to the coherent interference of the DVCS
amplitude with the Bethe-Heitler amplitude. In summary, the photon electroproduction
helicity-independent (dσ) and helicity-dependent (dΣ) cross sections read [10]:
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=

1

2
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]
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)
<e
[
CI(F)

]
+ ΓI0,∆<e

[
CI + ∆CI

]
(F) + cos(2φ)ΓI2<e

[
CI(F eff )

]
,

(1.60)
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(1.61)

where d5Φ = dxBdyd|∆2|dφdϕ. The CDV CS and CI terms are the combinations of
CFFs, from DVCS2 and interference contributions (Appendix C), we will relate the pho-
ton electroproduction cross section to. We only kept the leading (twist-2) contribution
CDV CS(F ,F∗) to the DVCS2 term in the helicity-independent cross section. Only a twist-
3 DVCS2 contribution is present in the helicity-dependent cross section. The mixing of the
DVCS2 term with the twist-3 sin(2φ) and cos(2φ) observables has been also suppressed. In
the case of the helicity-independent cross section we take the real part of all these terms
while we use the imaginary part in the helicity-dependent case. The Γi are kinematic
factors which depend on the beam energy. The extremely rich harmonic structure of the
DVCS cross section as a function of the azimuthal angle φ provides an excellent tool to
separate its different contributions. However, even though the DVCS2 terms in the cross
section have a different φ dependence than the interference terms (due to the absence of
the BH propagators), the dependence is not sufficiently different to allow, in the present
state, a reliable separation of these terms. Nevertheless, the angular separation can be
supplemented by an energy separation.

Figure 1.15: (Red) DVCS helicity-dependent (d4Σ) and helicity-independent (d4σ) cross
sections, measured in E00-110 for Q2 = 2.3 GeV 2 and t = 0.28 GeV 2. (Green) BH.
(Blue) CI(F) (including CDV CS(F eff ,F∗)) contribution. (Dashed line) [CI + ∆CI ](F)
contribution. (Dotted line) CI(F eff ) contribution.

Experiment E07-007 is focused on separating the interference terms CI(F) and
[
CI + ∆CI

]
(F)

from the DVCS2 term CDV CS(F ,F∗) in the helicity-independent cross section. Experimen-
tally, we can determine CDV CS(F ,F∗) if we make an accurate cross section measurement
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at constant xB and t (and Q2 ) at two different incident beam energies (hence the name
of Rosenbluth Separation), since only the kinematic factors Γi are affected by this change
whereas the extracted coefficients do not. A measurement of CDV CS(F ,F∗) is essential
in order to properly interpret the experimental DVCS observables in terms of GPDs. A
similar experiment to E07-007, measuring the cross section for deeply virtual Compton
scattering off the deuteron (JLab E08-025), is being carried on [36]. There are several
indications that the size of the DVCS2 term, CDV CS(F ,F∗), can be important. Some of
these indications come from the high precision data obtained in a previous experiment,
E00-110 at Jefferson Lab. Figure 1.15 shows (for one bin in Q2 and t) the DVCS cross
sections measured in E00-110 [37]. The green curve in the unpolarized cross section d4σ
(lower panel) shows the contribution of the BH to the cross section. The BH only accounts
for half of the total cross section between 90◦ and 270◦. It is unlikely that the DVCS2

contribution is negligible, since the interference term (BH·DVCS) alone could not possibly
account for the difference in this case. Theoretical models also predict this contribution to
be large [38], [39], [40]. In order to estimate the accuracy on the extraction of the DVCS2

(and the interference) terms, a simulation of the extraction procedure was performed. In
this new experiment, we have an additional ΓDV CS0 , associated with CDV CS(F ,F∗). We
can see its contribution to the cross section as the magenta line of the Figure 1.16, which
shows some results of the simulation:

Figure 1.16: Simulated cross-section measurements for the Q2 = 1.5 GeV 2 setting at two
different beam energies. CDV CS(F ,F∗)=20. Note that the differential cross section only
depends on 4 variables after the integration over ϕ, since this variable contains no physics.
The dependence on the kinematic variable y has been replaced by the dependence on Q2,
through the expression Q = Ebεy.
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In summary, the experiment is expected to perform a meaningful separation of the
DVCS2, or, if this contribution is small, to draw a decisive conclusion about its size.
Below, a table with the different settings for every kinematic is shown, (q′ stands for the
virtual photon energy):

Kinematics 1 Kinematics 2 Kinematics 3
Q2 (GeV 2) 1.5 1.75 2

xB 0.36 0.36 0.36
W 2 (GeV 2) 3.55 3.99 4 .44
q′ (GeV ) 2.14 2.51 2.88
Eb (GeV ) 5.552 3.356 5.552 4.454 5.552 4.454

Table 1.2: Different settings for the kinematics employed in experiment E07-007.
q′ = k − k′.

We must take into account that in order to maintain the same net statistical contri-
bution to the DVCS separations from the two beam energy settings, one must increase
the beam time at the lower energy setting.





Chapter 2
Experimental setup

Experiment E07-007, “Rosenbluth separation of DVCS cross section”, on which this thesis
is based, was conducted in Hall A at Jefferson Lab during the period comprehended
between October and December of 2010. In this chapter a detailed description of the
main instrumentation used in the experimental setup will be given. We begin by a general
description of the laboratory and more precisely, of Hall A.

2.1 Jefferson Lab

Located in Newport News, Virginia (U.S.A.), the laboratory’s main research facility is
the Continuous Electron Beam Accelerator Facility (CEBAF) [41]. Its scientific goal is
to investigate the structure of nuclei and hadrons and the underlying fundamental in-
teractions in the region below the high-energy “asymptotically free” regime. CEBAF
consists of a polarized electron source and injector and a pair of superconducting RF lin-
ear accelerators, which operate with sinusoidally varying electromagnetic fields at radio
frequency, of 300m in length, connected to each other by two arc sections which contain
steering magnets. Each linac contains 20 cryomodules with a design accelerating gradient
of 5 MeV/m. Ongoing in situ processing resulted in an average gradient in excess of 7
MeV/m, which made it possible to accelerate electrons to a maximum of 6 GeV as the
beam makes up to five successive orbits.

The design of CEBAF allows the electron beam to be continuous rather than the
pulsed beam typical of ring shaped accelerators. There is some beam structure but the
pulses are very much shorter and closer together. One bunch can be peeled off after each
linac pass to any one of the Halls, labelled Hall A, Hall B, and Hall C, using RF sepa-
rators and septa, partitions that separate two field regions. Each one of these facilities
can receive simultaneously maximum beam energy and is equipped with the necessary
instruments to record the results of collision between the electron beam and a stationary

37
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target (Figure 2.1). A fourth experimental hall, known as Hall D [42], is currently under
construction and is scheduled to begin experiments in 2015. The new experimental Hall
D will use the electron beam to produce a coherent bremsstrahlung beam and house a
solenoid detector to carry out a program in gluonic spectroscopy to experimentally test
current understanding of quark confinement.

Currently, Jefferson Lab is undergoing an upgrading process after which the electron
beam is expected to reach 12 GeV [43], [44]. Figure 2.2 shows the main modifications
being carried on.

Figure 2.1: CEBAF and Halls A, B and C. Figure 2.2: Schematic layout of the required
facility modifications to realize the 12 GeV
Upgrade.

2.2 Hall A

Hall A is used for experiments which require high luminosity and/or high resolution in mo-
mentum and/or angle for at least one of the reaction products. The hall is used primarily
for experiments that study the structure of the nucleus and the protons and neutrons it
contains, focusing on nucleon form factors to high Q2, the strange-quark structure of the
proton, nucleon spin structure, few-body form factors to high Q2 and nuclear structure
at small inter-nucleon separations [45].

The basic layout of Hall A is shown in figure 2.3. The central elements are the two High
Resolution Spectrometers (HRS). Both of these devices provide a momentum resolution
better than 2 · 10−4 and a horizontal angular resolution of better than 2 mrad at a design
maximum central momentum of 4 GeV/c. The spectrometers must have high resolution
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to be able to isolate the different reaction channels in nuclei so that a clean comparison
with theory can be achieved.

Figure 2.3: Hall A schematic layout.

The spectrometers are known as “Left” and “Right” (HRS-L and HRS-R). During
the DVCS experiment only one of the spectrometers was used, HRS-L. We move on to
the description of this device as well as the components along the beamline [46], the
target chamber and the electromagnetic calorimeter that was installed for the experiment
purpose.

2.2.1 High Resolution Spectrometer (HRS)

During the experiment the HRS-L was used to detect the scattered electron in DVCS
reactions. Its basic layout is shown in figure 2.4. The vertically bending design includes
a pair of superconducting cos(2θ) quadrupoles followed by a 6.6m long dipole magnet
with focussing entrance and exit polefaces and including additional focussing from a field
gradient in the dipole. Following the dipole is a third superconducting cos(2θ) quadrupole.

Both spectrometers were designed to be able to identify the different charged parti-
cles going through them. Their main functions include: providing a trigger to activate
the data-acquisition electronics, collecting tracking information (position and direction),
precise timing for time-of-flight measurements and coincidence determination, and iden-
tification of the scattered particles. The timing information is provided from scintillators,
as well as the main trigger. The particle identification is obtained from a variety of
Čherenkov type detectors (aerogel and gas) and lead-glass shower counters[47]. A pair of
Vertical Drift Chambers (VDCs) provide tracking information [48]. The main part of the
detector package in the two spectrometers (trigger scintillators and VDCs) is identical,



Experimental setup 40

but the arrangement of particle-identification detectors differs slightly.

Figure 2.4: Schematic layout of the detector package of the HRS-L.

Tracking information is provided by a pair of VDCs in each HRS. The concept of
VDCs fits well into the scheme of a spectrometer with a small acceptance, allowing a sim-
ple analysis algorithm and high efficiency, because multiple tracks are rare. Each VDC
chamber is composed of two wire planes, separated by about 335mm, in a standard UV
configuration (the wires of each successive plane are oriented at 90◦ to one another, and
lie in the laboratory horizontal plane).

There are two primary trigger scintillator planes (S1 and S2), separated by a distance
of about 2m. Each plane is composed of six overlapping paddles made of thin plastic
scintillator to minimize hadron absorption. Each scintillator paddle is viewed by two
photomultipliers (PMTs). The time resolution per plane is approximately 0.30ns. For
experiments which need a high hadron trigger efficiency, an additional scintillator trigger
counter (S0) can be installed. A gas Čherenkov detector filled with CO2 at atmospheric
pressure is mounted between the trigger scintillator planes S1 and S2. The detector allows
an electron identification with 99% efficiency and has a threshold for pions at 4.8 GeV/c.

Each spectrometer is equipped with two layers of shower detectors. The blocks in both
shower detectors in HRS-L and in the first layer in HRS-R are oriented perpendicular to
the particle tracks. In the second layer of HRS-R, the blocks are parallel to the tracks. The
dimensions of the rear straw chambers were chosen to be large enough that the geometrical
efficiency is nearly 100% for a scattering angle up to 20◦ for the full acceptance of the
HRS.
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2.3 Beamline

Figure 2.5: Schematic layout of the Compton polarimeter, showing the four dipoles of the
chicane, the optical cavity and the photon and electron detector.

The instrumentation along the beamline [49] consists of various elements necessary to
transport the electron beam onto the target and into the dump, and to measure simulta-
neously the relevant properties of the beam. Such instrumentation allows us to determine
the beam energy, its current and polarization, and also the position, direction, size and
stability of the beam at the Hall A target location. The beam diagnostic elements con-
sist of transmission-line position monitors, current monitors, superharps, viewers, loss
monitors and optical transition radiation (OTR) viewers.

2.3.1 Beam position

To determine the position and direction of the beam at the target location, two Beam
Position Monitors (BPMs) are located upstream of the target. The standard difference-
over-sum technique is then used to determine the relative position of the beam to within
100µm for currents above 1 µA [50]. The absolute position of the beam can be determined
from the BPMs by calibrating them with respect to wire scanners which are located ad-
jacent to each of the BPMs.
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2.3.2 Beam current

In order to measure the beam current a Beam Current Monitor (BCM) was installed in
Hall A. It is designed for a stable, low-noise, non-interfering beam current measurement.
It consists of an Unser monitor, two RF cavities and the associated electronics. The
cavities and the Unser monitor are enclosed in a temperature-stabilized box to improve
magnetic shielding.

The Unser monitor is a Parametric Current Transformer which provides an absolute
reference [51]. The monitor is calibrated by passing a known current through a wire inside
the beam pipe and has a nominal output of 4 mV/µA. The Unser monitor cannot be used
to continuously monitor the beam current since its output signal drifts significantly on a
time scale of several minutes. To minimize this drifting the Unser monitor is equipped
with an extensive magnetic shielding and temperature stabilization to reduce noise. The
two resonant RF cavity monitors on either side of the Unser Monitor are stainless steel
cylindrical waveguides which are tuned to the frequency of the beam (1.497 GHz) result-
ing in voltage levels at their outputs which are proportional to the beam current.

2.3.3 Beam energy

The energy of the beam is measured absolutely by the so called Arc method [52]. This
method determines the energy by measuring the deflection of the beam in the arc section
of the beamline. The measurement is made when the beam is tuned in dispersive mode
in the arc section. The momentum of the beam (pb in GeV/c) is then related to the field

integral of the eight dipoles (
∫
~B · ~dl in T·m) and the net bend angle through the arc

section (θ in radians) by

pb = kb

∫
~B · ~dl
θ

(2.1)

where kb=0.299792 GeV rad T−1 m−1/c. For the measurement to be successful one must
simultaneously measure the magnetic field integral of the bending elements (eight dipoles
in the arc), based on a reference magnet (9th dipole) measurement, and the actual bend
angle of the arc, based on a set of wire scanners.

2.3.4 Polarimeters

One of the goals of the E07-007 experiment is to obtain helicity dependent cross sec-
tions of the photon electroproduction reaction. Therefore it is important to measure the
polarization of the electron beam delivered to the hall A, with a typical beam polar-
ization of 75-85%. The beamline is equipped with two polarimeters, the Møller and the
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Compton polarimeters, whose functions are partly overlapping and partly complementary.

Møller Polarimeter

The purpose of the Møller polarimeter is to measure the longitudinal component of the
beam polarization. To do so a ferromagnetic foil, magnetized in a magnetic field of about
24 mT along its plane, is set as a target for the beam polarized electrons. The magnetized
foil is placed in order to exploit the process of Møller scattering of polarized electrons off
polarized atomic electrons. It is possible to calculate the beam polarization by studying
the Møller scattering cross section, which depends on the beam and target polarizations.

The target foil can be tilted at various angles to the beam in the horizontal plane, pro-
viding a target polarization that has both longitudinal and transverse components. The
spin of the incoming electron beam may have a transverse component due to precession
in the accelerator and in the extraction arc. The asymmetry is measured at two target
angles of about ± 20◦ and the average is taken. Because the transverse contributions have
opposite signs for these target angles, the transverse contributions cancel in the average.

A magnetic spectrometer consisting of a sequence of three quadrupole magnets and a
dipole magnet detects the Møller scattering events. It is not possible to measure the beam
polarization at the same time when the experiment is running due to the invasive method
of the process. The measurements with the Møller typically take an hour, providing a
statistical accuracy of about 0.2%.

The dominant uncertainty of the Møller polarimeter comes from the uncertainty in the
target polarization. Another uncertainty comes from the fact that the Møller polarimeter
has to use a low beam current (0.5 µA, typically). The current is reduced at the injector,
either by attenuating the laser light or with a slit at the chopper, each of which might
change the beam polarization.

Compton Polarimeter

The Compton polarimeter, utilizing the process of Compton scattering, analyzes the beam
polarization from the measurement of the counting rate asymmetry for opposite beam he-
licities in the scattering of a circularly polarized photon beam by the electron beam [53].
Opposite to the Møller polarimeter (which measurements are invasive), it was designed
to measure the beam polarization concurrently with experiments running in the hall to
a 1% statistical error within an hour. Installed at the entrance of the hall, the Compton
polarimeter consists of a magnetic chicane, a photon source, an electromagnetic calorime-
ter, and an electron detector as shown in figure 2.5.
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The electron beam is deflected vertically by the four dipoles of the chicane and crosses
the photon beam at the Compton interaction point. After interaction, the backscattered
photons are detected in the calorimeter and the electrons in the silicon strip electron de-
tector located a few mm above the primary beam in front of the fourth dipole. Electrons
that did not interact exit the polarimeter and reach the target.

2.4 The target system

For DVCS experiment on the proton a liquid hydrogen (LH2) target was employed. The
cryogenic target system in Hall A is mounted inside a scattering chamber along with sub-
systems for cooling, gas handling, temperature and pressure monitoring, target control
and motion, and an attached calibration and solid target ladder. The operating temper-
ature and pressure of the LH2 target are 19 K and 0.17 MPa, with a density of about
0.0723 g/cm3. A liquid deuterium (LD2) target was used for DVCS experiment on the
neutron, with the following values for temperature and pressure: 22 K and 0.15 MPa, and
a density of 0.167 g/cm3.

Each of the two liquid loops has two aluminum cylindrical target cells mounted on a
target ladder. The cells are 63.5mm in diameter and 15cm long. The sidewalls of the cells
are 178mm thick, with entrance and exit windows approximately 71 and 102µm thick,
respectively. The target is in an enclosure filled with helium. Helium cooling jets on the
target windows prevent the electron beam from overheating the target cell. Both liquid
targets are sub-cooled by 3 K. Along with these two targets, the basic cryogenic target
system has a gaseous helium loop.

Besides the three mentioned targets, there are three dummy targets and a solid target
ladder with five positions. The dummy targets, used to measure contributions from the
windows, contain two thin pieces of aluminum. The positions of the solid target ladder
are usually occupied by a BeO target, an empty target, a 12 C target, used to study the
spectrometer acceptance, and two special-purpose targets. The solid targets are usually
not cooled.

2.5 Electromagnetic Calorimeter

The electromagnetic calorimeter is an upgraded version of the very same device used in
previous DVCS experiments. It used to be composed of 132 lead fluoride (PbF2) blocks
arranged in 12 rows and 11 columns. The upgrade consisted on incrementing its size for
a larger angle coverage. Now it is composed of 208 PbF2 blocks disposed in 16 rows and
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13 columns. Lead fluoride has the following characteristics: a density of 7.77 g/cm3, a
radiation length of 0.93cm, a Molière radius of 2.2cm and a refraction index of 1.8. The
surface of the blocks is 3 × 3cm2, and their length was taken to 20 radiation lengths
giving a total length of 18.6cm, thus more than 99.9% of the photon energy is absorbed
in the crystals, and a typical electromagnetic shower is contained in 9 adjacent blocks,
with approximately 90% of the energy deposited in the central block.

Figure 2.6: Front view of the calorimeter

PbF2 emits only light from Čerenkov process, around 1000 Čerenkov photons are emit-
ted per GeV. This has the advantage of being insensitive to background particles of

β <
c

n
=

1

1.8
= 0.56, corresponding to electrons lower than 0.6 MeV which cuts a part of

the low energy background. Also it has a quick response, making easier pulse separation
in case of pile-up.

The calorimeter was designed modularly, each block was coupled to a PMT (Hama-
matsu R7700) using a tightening fixture in brass. Each block is wrapped in Tyvek c©

(internal wrapping) and Tedlar c© (external wrapping). A small bus was designed for each
calorimeter column in order to supply the HV, the DC current for the amplifier, the mon-
itoring of the anode current and a support for the signal cable.
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15 31 47 63 79 95 111 127 143 159 175 191 207
14 30 46 62 78 94 110 126 142 158 174 190 206
13 29 45 61 77 93 109 125 141 157 173 189 205
12 28 44 60 76 92 108 124 140 156 172 188 204
11 27 43 59 75 91 107 123 139 155 171 187 203
10 26 42 58 74 90 106 122 138 154 170 186 202
9 25 41 57 73 89 105 121 137 153 169 185 201
8 24 40 56 72 88 104 120 136 152 168 184 200
7 23 39 55 71 87 103 119 135 151 167 183 199
6 22 38 54 70 86 102 118 134 150 166 182 198
5 21 37 53 69 85 101 117 133 149 165 181 197
4 20 36 52 68 84 100 116 132 148 164 180 196
3 19 35 51 67 83 99 115 131 147 163 179 195
2 18 34 50 66 82 98 114 130 146 162 178 194
1 17 33 49 65 81 97 113 129 145 161 177 193
0 16 32 48 64 80 96 112 128 144 160 176 192

Table 2.1: Schematic view of the backside of the calorimeter, showing block numbers.

In order to balance the PMTs gain cosmic rays were used. Two scintillator paddles
were placed on top of the calorimeter to generate a cosmics trigger. The stop was generated
by the scintillators and validated by the calorimeter trigger. In order to select cosmics
going through the whole calorimeter, a coincidence between the top row and the bottom
row was also required by the calorimeter trigger. Such high energy cosmic rays leave
energy at the minimum ionizing value giving a well defined energy loss peak in each block
allowing to balance the gain.

2.6 Data acquisition

The electromagnetic calorimeter data acquisition system has been designed to store the
deposited energy of hitting particles as a function of an electric signal proportional to the
current of the PMTs attached to each one of its conforming blocks. These “wave signals”
encode the energy deposited on each block for a time window of 128ns since the issue of
the trigger from the HRS. Two main systems are involved in this process, the “Analog
Ring Sampler”, a device which stores the current variation of the PMTs for 128ns, and
the calorimeter trigger.

2.6.1 The Analog Ring Sampler

The Analog Ring Sampler is composed of 128 capacitors continuously sampling PMT
signals from the calorimeter [54]. The charge of each capacitor is proportional to the
value of the input signal. The incoming signals are continuously switched at a clock
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frequency of 1GHz as shown in Figure 2.7. As long as no trigger is issued the samples
get continuously overwritten. When a trigger is issued the switching is stopped and the
previous 128ns remain stored on the capacitors (i.e. they are not overwritten).
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Figure 2.7: Digitalization of the charge stored in the ARS capacitors.

The digitalization allows the recording of the signal of each channel for every event over
128ns as in a digital oscilloscope. The main purpose of this digitalization is to be able to
identify pile-up events and recognize the various signals in order to treat them separately.

2.6.2 Trigger

During the experiment the spectrometer trigger was composed by the scintillator plane
S2 and the Čerenkov detector. S2 defined t=0 for the calorimeter 128ns time window.
Once the spectrometer issues the trigger signal, the ARS stores the charge proportional
to the PbF2 calorimeter blocks input signal, as explained in the previous section. At the
same time 12-bit-flash-ADCs integrate the signal of each PMT attached to each block
composing the calorimeter. The trigger module computes the sum of these ADC values
for every set of 2×2 neighboring blocks. This is done since the electromagnetic cascade
is usually contained in 9 adjacent blocks, and a one block threshold would not be effective.

This computation takes as much as 340ns as shown in Figure 2.8. During this “deci-
sion time” only the ARS corresponding to 2×2 sets above a threshold will be selected as fit
for recording. Notice that while the calorimeter trigger only takes 340ns in selecting the
signals for data storing, it has a dead time of 500ns. The difference between both times
is employed in resetting the trigger sampling system. The digitalization and transfer of
the data imply a dead time of about 128 µs, in the case of at least one set of 2×2 blocks
being above the threshold. This time is larger than that needed for data transferring and
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Figure 2.8: Schematic layout of the calorimeter data acquisition.

trigger resetting in the HRS.

Unfortunately, the calorimeter trigger was only operational during the last week of the
experiment. During most of the time the data from the calorimeter were stored whenever
the spectrometer trigger issued a signal.

2.6.3 Data acquisition in Hall A

The general data-acquisition systems in Hall A use CODA (CEBAF On-line Data Acqui-
sition System) developed by the JLab data-acquisition group [55]. CODA is a toolkit of
distributed-software components from which data-acquisition systems of varying degrees
of complexity can be built. Supported hardware elements are mainly commercially avail-
able electronics.

Custom hardware elements made at JLab include the trigger supervisor which syn-
chronizes the read-out of the front-end crates and handles the dead-time logic of the
system [56]. The most important custom software components of CODA are the read-out
controller (ROC) which runs on the front-end crates, the event builder (EB) and event
recorder (ER) which run on a Unix or Linux workstation, the event transfer (ET) system
which allows distributed access to the data on-line or insertion of data from user processes,
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and finally the RunControl process, from which users can select different experimental
configurations, start and stop runs, as well as reset and monitor CODA components.

For each event, which corresponds to a trigger accepted by the trigger supervisor, data
are gathered from the front-end boards by the ROC component, which buffers the data in
memory and sends these buffers via the network to the EB running on a workstation. The
EB builds events from fragments sent by the various ROCs and passes them to the ER
which writes data to a local disk. The data are subsequently written to tapes and erased
from disk typically after one day. Using the ET system, various additional pieces of data
are inserted into the data stream every few seconds from the control system, scalers, or
text files of information. In addition, the ET system is used by analysis clients to obtain
a random sample of data in real-time anywhere on the network.

The Hall A physics data analysis model is straightforward. Raw data from the data
acquisition (DAQ) are decoded and analyzed by an event-processing program. The event
processor creates data summary files that contain raw and computed data, typically in
ntuple and histogram format. Diagnostic information as well as final physics results are
then extracted from the summary files with the help of interactive analysis tools.

2.7 Experimental Setup

Figure 2.9: Experimental setup. The electron beam interacts with the LH2/LD2 target,
producing an electron, a proton and a photon.

Figure 2.9 shows the schematic layout of the setup for the DVCS experiment E07-007.
The electron beam interacts with the LH2/LD2 target, producing an electron, a proton
and a photon. The electron is detected by the High Resolution Spectrometer (HRS), while
the photon is detected by the electromagnetic calorimeter. Since the scattered proton is
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not detected, we will identify the events where we had a scattered proton with the variable
M2

X “Missing Mass”, through the energy-momentum conservation relationship:

M2
X(ep→eγX) = (k − k′ + p− q′)2 (2.2)

We will select our DVCS events by imposing a cut in M2
X < (Mp +Mπ0)2 ' 1.15 GeV2.

During the time the experiment was running, several calibration sessions took place
for the calibration of the electromagnetic calorimeter blocks. For this purpose a different
setup was used (figure 2.10). This time the electron beam interacted with a target, pro-
ducing an electron and a proton in an elastic scattering reaction described as p+e→ p′+e′.
The proton was detected by the HRS, while the electron hit the calorimeter. Since we
are studying an elastic reaction, only by measuring the energy-momentum of the detected
proton in the HRS we can calculate the energy-momentum of the electron detected by the
calorimeter. Then we correlate the response of the signals from the calorimeter to that of
the electron energy to calibrate the energy channels.

Figure 2.10: Calorimeter calibration setup.

Table 2.2 shows the settings for the different experiment running sessions as well as
their names and dates. Kinematics enclose all the different experiment runs with the
same indicated settings. θL−HRS and θCalo stand for the position angle with respect to
the beam line of the left spectrometer and the calorimeter respectively. PL−HRS stands
for the momentum central value of the scattered electron detected by the L-HRS. Calo
dis. refers to the distance of the center of the calorimeter surface to the target. Notice
that it has a different value depending on if a calibrating session or a DVCS session was
being conducted. During calibrating sessions, the calorimeter was positioned at a larger
distance from the target than in DVCS sessions. This was done in order to have a full
coverage of the device, needed for the correct calibration of all its conforming blocks.
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The different angles for θL−HRS and θCalo serve to cover different parts of the calorimeter
(right, center, left). Table 2.3 shows the statistics collected for each kinematics, including
the target employed for each setting [10].

Kinematic xB Q2 Ebeam θL−HRS PL−HRS θCalo Calo dis.
name (GeV2) (GeV) (deg) (GeV) (deg) (m)

Elastic 1 - - 5.552 37.00/34.76/33.29 2.406/2.607/2.748 22.6 5.5
Elastic 2 - - 4.454 40.00/37.86/36.30 1.981/2.131/2.245 24.3 5.5
Kin 1-low 0.36 1.5 3.356 36.56 1.136 14.78 1.1
Kin 1-high 0.36 1.5 5.552 16.37 3.332 19.39 1.1
Kin 2-low 0.36 1.75 4.454 26.55 1.864 14.78 1.1
Kin 2-high 0.36 1.75 5.552 18.78 2.962 16.79 1.1
Kin 3-low 0.36 2 4.454 31.82 1.494 14.78 1.1
Kin 3-high 0.36 2 5.552 21.49 2.591 14.78 1.1

Table 2.2: Different settings used during the experiment.

Kinematic PAC hours % Completed Target
Kin 1-low 60 100% LH2

Kin 1-high 20 100% LH2

Kin 2-low
90 100% LH2

200 70% LD2

Kin 2-high
30 100% LH2

200 60% LD2

Kin 3-low 150 82% LH2

Kin 3-high 50 100% LH2

Table 2.3: Statistics collected for each kinematics.





Chapter 3
Calorimeter Signal Analysis and Calibration

Due to the high luminosity of the experiment in Hall A at Jefferson Lab, it is necessary
to deal with pile-up and background detections. When there is a detection, signals from
the calorimeter are stored for 128ns. By visualizing these time windows, we can observe
the photomultiplier current variation as a response to deposited energy: one pulse shape
when we have a hit, two pulses (pile-up) or background noise. Therefore, it is necessary
to implement an algorithm to extract the amplitude and time of arrival of these pulses,
in order to reconstruct the energy and momentum of the resulting photons from DVCS,
essential for calculating cross sections. We do so by comparing the signals to reference
shapes obtained from calibration sessions. At the same stage it is necessary to correct the
time of arrival, taking into account the different set-up distances of the calorimeter during
the experiment, differences in cable lengths and relative position of the blocks conforming
the apparatus.

Once the amplitude and time of arrival of the signals are known, it is important to
select the blocks where the incident particles deposited their energy. We would be tak-
ing too much noise contribution into our calculation if we took every block into account.
Moreover, we need to know the exact point of impact if we want to obtain the particles
momentum. This block selection is performed by a clustering algorithm which selects
combinations of blocks as a function of a pre-set energy threshold.

In order to convert signal amplitudes obtained from the waveform analysis into energy
units, it was necessary to conduct several calibration sessions, using the elastic reaction
e+p→ e’+p’. In this chapter we will review the waveform and clustering analysis as well
as go through the main steps of the calorimeter calibration.

53
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3.1 Waveform analysis

The purpose of the waveform analysis is to obtain the amplitude a and time of arrival t
of the calorimeter signals {xi}, by fitting those signals to a reference shape {hi}. In an
ideal event without noise where t = 0, the amplitude would be the one which minimizes

χ2 =
127∑
i=0

(xi − ahi)2. (3.1)

Here i runs for all the time window samples. But (3.1) is an ideal case, and generally the
time of arrival is not known, so the equation above will be transformed into:

χ2(t) =
127∑
i=0

(xi − a(t)hi−t)
2. (3.2)

Amplitudes are calculated analytically for every t. Then the reference shape is shifted
from its original position and the χ2(t) from (3.2) is calculated for every t of the time
window. We will define the arrival time of the signal as the time where we found the
minimum χ2(t) and so the best fit. The computation of the amplitude in our case is

∂χ2

a(t)
= −2

127∑
i=0

(xi − a(t)hi−t)hi−t = 0, (3.3)

and therefore

a(t) =

127∑
i=0

xihi−t

127∑
i=0

h2
i−t

. (3.4)

3.1.1 Reference pulses

Reference shapes are calculated from the pulses obtained in calibration sessions. For each
calibration session we create a reference pulse, for every block, from signals stored for
that block. The reference pulse is created using signals with a high response from the
photomultipliers (usually above half the energy channels). The first of the selected signals
is weighted by its amplitude, and then we begin an iterative process in which we add the
rest of the signals to the first one. In each step, a new signal is added to the sum with a
weight that starts from 1, and increases its value in 1 iteration after iteration. The pulses
are shifted in time with the aim of superimposing them all. The time of the reference
shape is set at the time when most of the signals used for its construction arrived.
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Figure 3.1: Reference shape for block 27. Elastic 2 (17 Nov) calibration.

3.1.2 Baseline fit

We analyse the digitized signals to find 3 different cases (noise, one pulse and two pulses)
which we will differentiate by the value of the χ2 of our fit, which is defined for each case.
When analysing any signal, the first thing we check is whether it is noise or potentially
useful data. For this matter we include a baseline b(t) in the definition of our χ2,

χ2 =

χ2
max∑

i=χ2
min

(xi − b)2 where b =
1

(imax − imin)

imax∑
i=imin

xi. (3.5)
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Figure 3.2: Noise from PMTs. b is represented in red. Notice that the initial and final
parts of the data window are not included in the analysis window.

Here, b is just the mean value of the signal between imin and imax (values of the 128ns
time window). Note that the index for the χ2 calculation runs from χ2

min to χ2
max. These
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different analysis time windows are meant to speed up the computation by only considering
the portion of the 128ns time window where most of the information is expected to be
found. If the χ2 is smaller than a χ2

0 threshold (table 3.2 shows all the bounds and
thresholds for the analysis parameters. Criteria for threshold selection is explained in
section 3.1.6), the baseline will be considered good and the signal will be discarded.
Otherwise a one pulse fit will be performed as shown in the following case.

3.1.3 One pulse fit

Most of the useful information is obtained from one pulse fits. In this case, we include
the baseline in our χ2 definition in order to minimize the impact of background noise.

χ2(t1) =

χ2
max∑

i=χ2
min

(xi − a1(t1)hi−t1 − b(t1))2. (3.6)

In this case, the baseline fit does not have the same definition as in the previous case.
It is calculated analytically along with the amplitude a(t1), by selecting the values that
minimize our χ2. The minimization yields the set of equations

∂χ2

∂a1

= −2
imax∑
i=imin

(xi − a1(t1)hi−t1 − b(t1))hi−t1 ,

∂χ2

∂b
= −2

imax∑
i=imin

(xi − a1(t1)hi−t1 − b(t1)),

(3.7)
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Figure 3.3: One pulse fit.

which can be displayed as a combination of matrices,
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
imax∑
i=imin

hi−t1xi

imax∑
i=imin

xi

 =


imax∑
i=imin

h2
i−t1

imax∑
i=imin

hi−t1

imax∑
i=imin

hi−t1

imax∑
i=imin

1




a1(t1)

b(t1)

 (3.8)

Here again, we use a threshold on the χ2 to check the quality of our fit. If it is smaller than
χ2

1, this fit will be considered good and we will save all information such as amplitude,
time of arrival, baseline, and χ2 values.

3.1.4 Two pulse fit

If the one pulse fit has proven inadequate, we try searching for a second pulse within the
bounds of the time window, to avoid losing information from pile-up events. We modify
the definition of the χ2 to include a second amplitude a2(t1, t2),

χ2(t1, t2) =

i=χ2
max∑

i=χ2
min

(xi − a1(t1, t2)hi−t1 − a2(t1, t2)hi−t2 − b(t1, t2))2. (3.9)
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Figure 3.4: Two pulse fit.

There is no further waveform analysis at this point, but if time separation between the
two pulses is below 4ns we will keep the result from the one pulse fit. Below this threshold
we can’t differentiate the signals, they overlap. Again, the minimization of the χ2 yields
a set of equations that we express in a matricial form.
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

imax∑
i=imin

hi−t1xi

imax∑
i=imin

hi−t2xi

imax∑
i=imin

xi


=



imax∑
i=imin

h2
i−t1

imax∑
i=imin

hi−t1hi−t2

imax∑
i=imin

hi−t1

imax∑
i=imin

hi−t1hi−t2

imax∑
i=imin

h2
i−t2

imax∑
i=imin

hi−t2

imax∑
i=imin

hi−t1

imax∑
i=imin

hi−t2

imax∑
i=imin

1





a1(t1, t2)

a2(t1, t2)

b(t1, t2)


(3.10)

Unfortunately, there is a problem when introducing a baseline in a two pulse fit. Some-
times the baseline will have a higher value than that of the highest peak of the signal,
and the amplitudes that minimize the χ2 will be negative (thus rendering false data). In
order to avoid this issue it was decided that the two pulse fits would be performed without
including a baseline. We rewrite our matrices like


imax∑
i=imin

hi−t1xi

imax∑
i=imin

hi−t2xi

 =


imax∑
i=imin

h2
i−t1

imax∑
i=imin

hi−t1hi−t2

imax∑
i=imin

hi−t2hi−t1

imax∑
i=imin

h2
i−t2




a1(t1, t2)

a2(t1, t2)


(3.11)

It is unusual for an electronic signal to saturate, but it happens. Even if this is not likely
to happen we cannot accept events with saturating signals. For calibration purposes,
whenever any block showed this problem, the whole event was discarded. During the
experiment the saturation threshold was too high to affect the data.

3.1.5 Arrival time

The arrival time is an important element to associate different block signals to one an-
other, since the electromagnetic shower unleashed by hitting particles is usually contained
in nine or more blocks. This time of arrival will be given with respect to the time assigned
to the reference shape of the block in question plus a small correction.

In a preliminary analysis we searched for the time of arrival for most of the signals.
We observed that for each block, this variable behaved as a Gaussian distribution. We
fitted this 208 distributions to extract the 208 time values we then associated to the
reference shapes (t = 0). Afterward, we fitted the signals of the experimental runs (not
from calibration sessions) using the reference shapes, and again searched for the time of
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arrival for most of the signals. Here, once more, we found Gaussian distributions [57].
Since this analysis is conducted using reference shapes what we obtain is the difference
in time between the pulse with respect to the reference shapes (one of the reasons of
this difference is that reference shapes are obtained from calibrating sessions where the
calorimeter was further positioned than in experimental sessions). We will refer to this
variable as tcorr (time correction, usually a few ns).
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Figure 3.5: Gaussian fit of time difference between a pulse and the reference shape.

Since data are digitized at 1 GHz (1ns sample), we can’t experimentally have a better
resolution than 1ns, but it is possible to increase this resolution for the arrival time
through an interpolation using χ2

min (the minimum χ2(t), thus determining the time of
arrival) , χ2

t+1 and χ2
t−1 (one ns after and before χ2

min). To do so we introduce a parabolic
relation between time and χ2(t),

χ2(t) = at2 + bt+ c. (3.12)

Then we minimize the χ2(t) to find tmin

∂χ2(t)

∂t
= 2atmin + b = 0 tmin =

−b
2a
. (3.13)

We can easily obtain the following equations using (3.12)

χ2(0) = c,
χ2(1) = a+ b+ c,
χ2(−1) = a− b+ c.

and combine them to reach the final expression for tmin. The expression for the time of
arrival with the interpolation is related to that without the interpolation, t(χ2

min), in the
general equation
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tmin = t(χ2
min) +

χ2
t−1 − χ2

t+1

2(χ2
t+1 + χ2

t−1 − 2χ2
min)

. (3.14)

This correction can reach up to ± 0.5ns of the arrival time. Once we have applied all time
corrections we can repeat the waveform analysis, including all corrections and checking
that the arrival time of most of the pulses of each block for each run of every kinematic is
near zero or 1ns at worst. Figure 3.6 shows the values of this parameter for four different
blocks (black = Kin 1-low; red = Kin 1-high; green = Kin 2-low (LD2); blue = Kin 2-low;
yellow = Kin 2-high (LD2); magenta = Kin 2-high; light blue = Kin 3-low; olive = Kin
3-high):
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Figure 3.6: Time of arrival for most of the pulses for each run for four different blocks.
Runs in the left (light blue) belong to an early stage of the experiment, when some issues
concerning block malfunction aroused. This is addressed later in this chapter (3.3.3).

3.1.6 Analysis parameters

The selection of an appropriate fitting threshold is important to perform a fit that adjusts
the type of pulse we are dealing with. It will also affect the speed of the analysis. This
speed can be increased by introducing a set of parameters to extract valuable information
from the time window without having to process the whole lot of it.
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One pulse threshold

Signals that don’t reach a minimum energy, E0, after a baseline fit are discarded and
therefore no one pulse fit is performed. We saw that the waveform analysis is done by
minimizing the χ2 of the signal fit, but this is not a variable we are familiar with. We
evaluate E0 in terms of χ2 by using the reference shapes.

χ2
ref =

χ2
max∑

i=χ2
min

h2
i . (3.15)

χ2
ref is basically the area covered by the reference shape in energy channels. Since a

reference pulse has an amplitude, a1 = 1, its energy is the value of its associated calibration
coefficient in GeV (see eq. (3.18)). So, for a pulse with energy E0 we have

χ2
0 =

127∑
i=0

(
E0

Ci
href (i)

)2

. (3.16)

Here, Ci stands for the calibration coefficients. Now we can compare the χ2 from any
baseline fit with χ2

0. If χ2 < χ2
0 the signal is discarded. This means that after performing

the baseline fit, if the χ2 differs in more than a value associated to an energy E0 we will
look for a pulse. In order to decide which would be the most appropriate E0 we did some
testing with different values, and studied the evolution of the calorimeter resolution using
calibration runs.

Threshold (MeV) Coefficients variation Resolution
0 - 3.07%
21 ∼ 0.3% 3.06%
42 ∼ 3% 3.35%
63 ∼ 5% 3.86%

Table 3.1: Variation of calorimeter resolution with the one pulse threshold. The compu-
tation of the resolution is addressed in section 3.3.2.

Table 3.1 shows the variation induced in the calibration coefficients when the one pulse
threshold is altered. The resolution of the calorimeter is recalculated using the new
coefficients and also displayed in the table above. 21 MeV was selected as threshold, E0,
due to the minimum variation on the calorimeter resolution.

Two pulse threshold

χ2
1 has a value of 100 MeV in energy units. This means that when a 1 pulse is performed

and our χ2 shows a discrepancy of 100 MeV or more with the fit, a 2 pulses fit will be
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conducted. Since the average energy of the photons hitting the calorimeter is about 2.4
GeV, the threshold is set at around 4% of this energy. Setting a lower threshold would
be possible, but it would increase the analysing time (decreasing the threshold by half of
its value increases the analysing time by 30% approximately). This threshold is to make
sure we have two pulses when we perform a two fit pulse.
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Figure 3.7: Events with two pulses per block. Both signals > 30MeV .

The data shown on Figure 3.7 belong to run 9123 (Kin 3-high LH2). The histogram shows
the amount of events with two pulses we find for every block as a percentage of the total
of events stored by the calorimeter. We find 8.4 % of events with at least one block with
two signals. The nearer the blocks are to the beam the more 2 pulses signals are collected.
It is easy to recognize the pattern of the columns of blocks in the calorimeter. Blocks
located in the middle of these columns have more statistics.

Parameters summary

The values for the parameters employed in the waveform analysis are summarized in table
3.2. Along with the table a brief description of all of them is given.

• Analysis window: is delimited by imin and imax to dispose of the first and last ns of
the data window. These parts carry no useful information. We estimated that all
the valuable information is contained in a 80ns window, since the usual width of a
pulse is about 30ns (we take into account that we might detect two pulses in the
same window). We adjust the signals taking care not to reach the borders of the
data window.

• χ2-window: the χ2 is used to test the quality of our fits, but it is only calculated
in a 40ns window around the minimum value of the reference shape (refmin, PMT
pulses are negative). This window should be enough to cover the pulse in its whole.
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Analysis window [imin, imax]
imin = Max(5ns, 20ns+ tcorr)
imax = Min(123ns, 100ns+ tcorr)

χ2-window [χ2
min, χ

2
max]

χ2
min = Max(5ns, refmin − 20ns+ tcorr)
χ2
max = Min(123ns, refmin + 20ns+ tcorr)

1st-window [tmin1 , tmax1 ]
tmin1 = −20ns+ tcorr
tmax1 = 25ns+ tcorr

2nd-window [tmin2 , tmax2 ]
tmin2 = −40ns+ tcorr
tmax2 = 40ns+ tcorr

Resolution ∆τ 4ns
0-pulse χ2 threshold χ2

0 21 MeV
1-pulse χ2 threshold χ2

1 100 MeV

Table 3.2: Analysis parameters and their values

• 1st-window: this window puts a limit in the time of arrival of pulses to be fitted. If
the time of arrival of a pulse is below -20ns or above +25ns of that expected the
signal will be discarded.

• 2nd-window: same as 1st-window but the window is broadened in order to find piled
up events.

• Resolution: If the separation between 2 pulses piled up is less than this parameter
we will consider them as one pulse.

• χ2 thresholds: We use these thresholds to select the type of fitting we will perform.

3.2 Impact blocks selection, Clustering

When reconstructing the detected photon energy, it is important to select only the blocks
in which energy was deposited, since most of them will have collected just noise. If we
included all the blocks in the calculation, we would be overestimating the value of the
deposited energy. One way of determining the impact point is to set an energy threshold
in the signals amplitude for each block. The problem with this method is that the photon
lays most of its energy in just one block (about 90%) while the other 10% is deposited in
the neighboring blocks. If we used this method, we would be underestimating the value
of the photon energy. A better way to workaround this issue is to set an energy threshold
to the energy sum of four adjacent blocks. An algorithm calculates this sum for every
possible combination of four adjacent blocks in the calorimeter. For example, Figure 3.8
shows the scheme of a corner of the calorimeter, where we can see in blue, red and yellow,
different possible combinations of four adjacent blocks (some combinations overlap).
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15 31 47 63 79 95 111
14 30 46 62 78 94 110
13 29 45 61 77 93 109
12 28 44 60 76 92 108
11 27 43 59 75 91 107
10 26 42 58 74 90 106
9 25 41 57 73 89 105
8 24 40 56 72 88 104
7 23 39 55 71 87 103
6 22 38 54 70 86 102
5 21 37 53 69 85 101

15 31 47 63 79 95 111
14 30 46 62 78 94 110
13 29 45 61 77 93 109
12 28 44 60 76 92 108
11 27 43 59 75 91 107
10 26 42 58 74 90 106
9 25 41 57 73 89 105
8 24 40 56 72 88 104
7 23 39 55 71 87 103
6 22 38 54 70 86 102
5 21 37 53 69 85 101

Figure 3.8: Blue, red, yellow : examples of possible combinations of four adjacent blocks.

Imagine that in our example all the colored combinations from both pictures were above
the energy threshold. In this case we would select all the blocks belonging to these
combinations as impact blocks:

15 31 47 63 79 95 111
14 30 46 62 78 94 110
13 29 45 61 77 93 109
12 28 44 60 76 92 108
11 27 43 59 75 91 107
10 26 42 58 74 90 106
9 25 41 57 73 89 105
8 24 40 56 72 88 104
7 23 39 55 71 87 103
6 22 38 54 70 86 102
5 21 37 53 69 85 101

15 31 47 63 79 95 111
14 30 46 62 78 94 110
13 29 45 61 77 93 109
12 28 44 60 76 92 108
11 27 43 59 75 91 107
10 26 42 58 74 90 106
9 25 41 57 73 89 105
8 24 40 56 72 88 104
7 23 39 55 71 87 103
6 22 38 54 70 86 102
5 21 37 53 69 85 101

Figure 3.9: Violet : selected impact blocks. Red : local maxima.

The “clustering” algorithm, created to form “clusters” (each being a combination of blocks
which determine the zone of impact of a particle), then searches for the local maxima of
each of the combination of selected impact blocks (Figure 3.9). Then, the algorithm
checks the amplitude of the blocks neighboring the local maxima, and forms a cluster by
adding every block with a lower amplitude. This process is repeated for every block that
neighbors any block already added to the cluster. In the case of our example this last
step is not very significant since the two different zones are far from each other, but it
proves useful when determining the sizes of close or overlapping impact zones. The exact
impact point is computed by assigning a weight, wi, to each block of the cluster,

x =

∑
iwixi∑
iwi

wi = max

{
0,

[
W0 + ln

(
Ei
E

)]}
. (3.17)

where x is the impact point, xi the position of the center of each block and

Ei = CiA
i E =

cluster∑
i

Ei. (3.18)
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Ei is the amplitude of the signals in energy units (GeV), and Ci the coefficients necessary
to perform this conversion. The electromagnetic shower created by a particle in the
calorimeter decreases exponentially in space. To account for this, we include the ln(Ei/E)
term in (3.17), which increases the weight of neighboring blocks accordingly to the energy
they registered. W0 allows us to adjust the weight of each block as a function of the
registered energy. When W0 → ∞, the weight distribution is uniform, whereas for small
values of W0 the blocks with higher energy prevail. W0 works as a threshold as well. Blocks
with a relative energy below e−W0 will be assigned a wi = 0. Since the computation of the
particle quadrivector uses the impact point in the calorimeter as well as the impact point
of the beam in the target, we must apply a correction to account for the fact that the
electromagnetic shower does not begin at the surface of the calorimeter, but at a certain
depth. Additionally, we must take into account the fact that we don’t have a point-like
target. Finally, the corrected position is given by

xcorr = x

(
1− a√

L2
hit + x2

)
, (3.19)

where a is the depth at which the electromagnetic shower starts (about 7cm, optimized
with Monte Carlo simulation and data from elastic runs), and Lhit is the distance from
the target impact point to the calorimeter.

3.2.1 Event time

The goal of the waveform analysis and clustering processes is to reconstruct the energy of
the leptoproduced photon from the calorimeter signals. This wouldn’t be possible if the
signals didn’t correspond to the same events. We can calculate the time of arrival of the
photon by weighting the signals composing the cluster through the expression

 (ns)eventT
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Figure 3.10: Tevent (ns) for Kin 3-high kinematic. σ ∼ 0.6ns.
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Tevent =

cluster∑
i

Ai(ti − ticorr)

cluster∑
i

Ai

, (3.20)

where Ai are the amplitudes of the signals, t is their time of arrival and tcorr the correction
in time. Due to the time corrections applied in section 3.1.5, in most of the events the
photon has a Tevent between ±1ns. We rule out events outside the ±3ns range, which
exceeds 3σ of the Tevent distribution, since these events do not match the trigger from the
spectrometer.

3.2.2 Clustering thresholds

When selecting a clustering threshold a couple of issues are to be taken into account.
The first one is that we will search for DVCS events in events which only formed one
cluster. The reason for this is obvious, we only expect one photon per reaction to hit the
calorimeter. The second one has to do with the subtraction of the background generated
by π0 decays. Sometimes the interaction of the electron beam with the target will result
in the production of a π0 that will decay into two photons. These photons may reach the
calorimeter and alter our data. We must find a way to remove the background generated
by this phenomenon. In order to do this, we keep the data from events that formed two
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Figure 3.11: Variation of the number of clusters with clustering threshold.

clusters, where we will find data from π0 decays (see chapter 4). In Figure 3.11, we
observe how the number of one-cluster and two-cluster events change as the clustering
threshold varies. If the clustering threshold is too high most of the events will form only
one cluster, whereas if it is too low any signal will form a cluster. We look for a threshold
which provides enough two-cluster events without decreasing the number of one-cluster
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events much. Also, we are interested in reducing the amount of three cluster events, since
we will discard all information from this kind of events. We chose to set the threshold at
0.75 GeV since it reduces the amount of three cluster events (less than 3%) while keeping
a good amount of one and two-cluster events.

3.3 Calorimeter calibration

The calorimeter calibration consists in calculating the coefficients that allow the conver-
sion between energy channels and energy units for each block conforming the apparatus.
Since calibration may vary as time goes by, several calibration sessions were conducted as
the experiment went by. The main cause of changes in the calibration is the loss of block
transparency due to their continuous exposure to high energy radiation. This phenomenon
contributes to the degradation of the blocks response with the course of time.

3.3.1 Calibration procedure

For the calibration procedure, the elastic reaction (e + p → e′ + p′) was studied, using
a LH2 target. The scattered proton was detected by the high resolution spectrometer
which at the same time served as a trigger for the detection of the scattered electron by
the calorimeter. The goal of this configuration is to be able to compute the scattered
electron energy EHRS using the known data from the beam energy Eb, the proton mass
Mp and the scattered proton energy Ep, and use them as a reference to fit the coefficients
assigned to the signals of the calorimeter.

EHRS = Eb +Mp − Ep. (3.21)

To better fit the value of the calibration coefficients we define a χ2 that includes the rela-
tion between coefficients, signal amplitudes and electron energies through the expression

χ2 =
N∑
j=1

(
EHRS
j

σ
−

207∑
i=0

CiA
i
j

σ

)2

. (3.22)

Where Aij is the signal amplitude for each event j in block i, and σ is related to the energy
resolution of the detection package (estimated to be around 3%). By minimizing (3.22)
as a function of the coefficients, we obtain a series of 208 linear equations that depend on
Ci

χ2

∂Ck
= −2Ck

N∑
j=1

(
EHRS
j

σ2
−

207∑
i=0

CiA
i
j

σ2

)
Akj = 0, ∀k = 0, 1, ..., 207. (3.23)
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207∑
i=0

[
N∑
j=1

AkjA
i
j

σ2

]
Ci =

N∑
j=1

EHRS
j Akj
σ2

, ∀k = 0, 1, ..., 207. (3.24)

By solving this system of equations, we can obtain the coefficients for the 208 blocks. We
begin by defining the 208 x 208 matrix Mik and the column vector Vk (208),

Mik =
N∑
j=1

AkjA
i
j

σ2
, Vk =

N∑
j=1

EHRS
j Akj
σ2

. (3.25)

Inverting the matrix Mik and multiplying it by the column vector Vk gives us the 208
coefficients. We can also calculate the coefficients error δ(Ci)),

Ci = M−1
ik Vk, ∀k = 0, 1, ..., 207. (3.26)

δ(Ci) =
√

(M−1
ii ). (3.27)
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Figure 3.12: Matrix Mik. Each axis contains the blocks numbering. The central line
corresponds to AkjA

i
j with i=k (same block), and the rest to AkjA
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j for the neighboring

blocks. The discontinuities in the lines appear when blocks in the edges of the calorimeter
are involved (they have less neighboring blocks).



Calorimeter Signal Analysis and Calibration 69

Elastic events, selection in the HRS

It is possible to identify elastic scattering reactions by using the correlation between
momentum and scattering angle for particles detected by the spectrometer. For elastic
reactions we expect a linear correlation between these two variables, which will help us
select the processes needed for the calibration. We obtained the deviation of the scattered
particles momentum from the HRS central momentum as well as their deviation in mrad,
and visualized these variables (the HRS provides this information in a percentual way).

Figure 3.13: Deviation of momentum and angle from HRS central values (parts per one).
The interior of black frame corresponds to the selected events employed in the calibration.

In Figure 3.13, we see a background of many kinds of detected particles. The cut tries
to select most of the events in which we observe the correlation between momentum and
angle, and discard those not coming from the elastic reaction (e+ p→ e′ + p′).

3.3.2 Calorimeter resolution

In the calorimeter, the amplitude of the signal pulse is proportional to the energy deposited
by the incident radiation. This creates an electromagnetic shower of Čerenkov photons
that fluctuates in number from one detection to another. For a detected energy of 1
GeV about 1000 ± 32 Čerenkov photons are emitted (estimation obtained from a Monte
Carlo simulation). This fluctuation establishes how accurately the calorimeter is able to
distinguish peaks of similar energy. We also check the angular resolution, which refers
to how well the calorimeter can distinguish the hitting point on its surface between two
impacts which are separated by a small angular distance.



Calorimeter Signal Analysis and Calibration 70

Energy resolution

It is possible to compute the calorimeter resolution using the elastic events from the
calibration sessions, but we will not take into account events with a hitting point in
the edge blocks (see Figure 3.14). In these cases not all the energy is deposited in the
calorimeter, and therefore, the resolution of the calorimeter on the edges is much worse.
This makes it impossible to have an acceptable value to compare with the data from the
spectrometer.

�
�
�
�

e’

Figure 3.14: Impact of e′ in the left upper corner of the calorimeter.

In this calculation, we are only concerned with the blocks that are completely surrounded
by other blocks. Once the calibration coefficients are known, we compare the value of the
energy EHRS, obtained using (3.21), and the reconstructed energy ECal, obtained using
the coefficients.

EHRS − ECal = ∆E where ECal =
cluster∑

i

CiA
i. (3.28)

For an ideal detector ∆Ej = 0 for every event j, but for our detector we obtain
a Gaussian distribution around 0 (Figure 3.15), that will allow us to know its energy
resolution. This resolution comes from dividing the σ of the Gaussian distribution by
the mean energy of the scattered electron ECal(Mean). The mean value of the energy
of the scattered electron is obtained from fitting the distribution of ECal (see Figure 3.16).

Energy resolution ≡ σ(∆E)

ECal(Mean)
(3.29)

The distributions shown above correspond to the Elastic 2 (18 Nov) calibration session.
For each calibration setup the following table shows the values of the resolution for both
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Figure 3.15: ∆E. σ(∆Ej) = 0.098 GeV Figure 3.16: ECal. ECal(Mean) = 3.15 GeV

sessions of each setup (three for the “Elastic 1” setup). The sessions are arranged chrono-
logically.

Date Eb (GeV ) ECal(M) (GeV ) σ(∆Ej) (GeV ) Resolution
Elastic 1 (17 Oct) 5.552 3.79 0.123 3.25%
Elastic 1 (19 Oct) 5.552 3.86 0.159 4.12%
Elastic 2 (25 Oct) 4.454 3.18 0.097 3.05%
Elastic 2 (26 Oct) 4.454 3.16 0.097 3.07%
Elastic 2 (17 Nov) 4.454 3.16 0.100 3.16%
Elastic 2 (18 Nov) 4.454 3.15 0.098 3.11%
Elastic 1 (14 Dec) 5.552 3.85 0.108 2.81%

Table 3.3: Energy resolutions for each calibration session.

There were several problems concerning the two first calibration sessions, addressed later
in this chapter. We observe that when the beam energy Eb is increased, we have a
better resolution. This is due to the inverse dependence of the energy resolution with
ECal(Mean).
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Angular resolution

Since we can trace back the impact point of the electron in the target and the impact
point of the scattered electron in the calorimeter surface we can calculate the scattering
angles θ and φ, defined as [58]

tg(θ) =
px
pz
,

tg(φ) =
py√
p2
x + p2

z

.
(3.30)

Figure 3.17: Coordinate system

In order to obtain these angles, we study the kinematics of the elastic scattering (e+ p→
e′ + p′). The momentum conservation equation reads

(0, 0, p1z)e + (0, 0, 0)p = (p′1x, p
′
1y, p

′
1z)e′ + (p′2x, p

′
2y, p

′
2z)p′ , (3.31)

(p′1x, p
′
1y, p

′
1z) = (−p′2x,−p′2y, Eb − p′2z), (3.32)

since p1z = Eb.

Now we write the scattering angles in terms of the electron momentum given by the
calorimeter (θe′ , φe′), and the momentum from the scattered proton and the beam energy
(θ′e′ , φ

′
e′), so we can compare both results.

θe′ = atan

(
p′1x
p′1z

)
, θ′e′ = atan

(
−p′2x

Eb − p′2z

)
. (3.33)

φe′ = atan

(
p′1y√

(p′1x)
2 + (p′1z)

2

)
, φ′e′ = atan

(
p′2y√

(p′2x)
2 + (Eb − p′2z)2

)
. (3.34)

The difference between the scattering angles obtained from the HRS and the calorimeter
are related to the angular resolution of the calorimeter,

∆θ = θ′e′ − θe′ , ∆φ = φ′e′ − φe′ . (3.35)
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Again, as we did with the scattered electron energy, we fit the distribution of the difference
measures from the HRS and the calorimeter. Figures 3.18 and 3.19 show the distributions
for these differences for both angles, θ and φ, for the calibration session Elastic 2 (18 Nov).
We take the σ of the amplitudes as the uncertainty of each angle in radians.
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Figure 3.18: ∆θ. σ(∆θ) = 1.75 mrad.
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Figure 3.19: ∆φ. σ(∆φ) = 2.14 mrad.

Since the distance of the surface of the calorimeter from the target is 5.5m, we can con-
vert the uncertainty in the hitting point location from angular units to a distance on the
surface. We multiply σ(∆θ) and σ(∆φ) by this factor to find the uncertainties on the
surface ∆x and ∆y, respectively.

Table 3.4 shows the angular resolution results for every calibration session

Date σ(∆θ) (mrad) σ(∆φ) (mrad) ∆x (cm) ∆y (cm)
Elastic 1 (17 Oct) 1.54 1.91 0.85 1.05
Elastic 1 (19 Oct) 1.46 1.98 0.80 1.09
Elastic 2 (25 Oct) 1.71 2.20 0.94 1.21
Elastic 2 (26 Oct) 1.69 2.20 0.93 1.21
Elastic 2 (17 Nov) 1.76 2.15 0.97 1.18
Elastic 2 (18 Nov) 1.75 2.14 0.96 1.18
Elastic 1 (14 Dec) 1.96 1.94 1.08 1.07

Table 3.4: Angular resolutions.
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π0 decay test

We can carry on a test to check the calibration of the calorimeter by selecting events
where π0 → γ + γ. Using the information from the experimental data for the energy of
the photons from two-cluster events we calculate the π0 mass:
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Figure 3.20: Invariant mass. 2 cluster events.
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Figure 3.21: Invariant mass, Mπ0 fit.

Mπ0 : 134.95± 0.12 MeV
Theoretical value: 134.9766(6) MeV

Figure 3.21 is a zoom of the peak of the invariant mass, shown on Figure 3.20, so the fit can
be appreciated in detail. This value for Mπ0 was obtained by using all the experimental
data, and it is in agreement with the theoretical value.

3.3.3 Calibration problems

Some of the problems concerning block malfunctioning are stated in the next paragraphs.

Signals from blocks 73 and 77 had been swapped during all the experiment. To solve
this we had to undo the swap during the data analysis process.

During calibration session Elastic 1 (17 Oct) block 119 wasn’t working properly. All
data stored from this block were found to be electronic noise. The same problem occurred
during calibration session Elastic 1 (19 Oct), this time concerning blocks 119, 163, 167,
177 and 181. The lack of information on the particles energy rends impossible the task
of calculating the calibration coefficients for these blocks. We assigned a symbolic value
of 1 to all of them. Moreover, this problem also affects the calculation of the coefficients
of the neighboring blocks, since part of the particles energy is missing. Since most of the
experiment runs took place after calibrating session Elastic 2 (25 Oct) the impact of this
issue on the data is minimal.
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From calibration session Elastic 2 (17 Nov) until the end of the experiment, signals
from block 89 show a reflexion of the signal within the cable that transmits the data from
the photomultipliers. Fits of these signals are less accurate than the rest.

During calibration session Elastic 1 (14 Dec) (last calibration session), the HRS trigger
wasn’t working as expected. As explained in chapter 2, t = 0 is supposed to be given by
the scintillator plane S2, but during this calibration, for many events, it was given by the
Čerenkov detector. This complicated the process of time correction of the pulses, forcing
us to use two different corrections depending on which detector set t = 0.

3.3.4 Coefficients comparison

We compare the coefficients obtained through the different measurement sessions to prove
their consistency [59]. At the same time, we can observe the process of loss of transparency
of the blocks due to their exposure to radiation. The loss of transparency affects the
coefficients in the following way: since the response of the block decreases over time, the
coefficients increase to account for this phenomenon. Therefore, if we were to divide the
coefficients of one calibration session by those of a latter one, we should obtain a result
higher than 1 for each block. However, the voltages of the PMTs have different settings
for some of the sessions. Due to this, the absolute value of the coefficients is not always
directly comparable, so we resort to the expression for the gain, G, of the PMTs

G = αV β. (3.36)

Where α is a constant, V is the value of the PMTs voltage (±1V ), and β has a typical
value of ∼ 7.0 ± 0.1 for the calorimeter PMTs. Using (3.36), the coefficients C1 and C2

of two different calibration sessions now read

1

C1

= αV β
1 ,

1

C2

= αV β
2 , (3.37)

and therefore
C2

C1

=

(
V1

V2

)β
−→ 1 =

C1

C2

(
V1

V2

)β
. (3.38)

Below, we can observe the comparison between the coefficients of each calibration session
and the coefficients from the next session (arranged chronologically). The comparison for
the blocks located in the borders of the calorimeter is in red to point out that due to their
position on the detector they are less reliable than the others. When there is a change in
the voltages, it will be indicated by (VCh). The statistic error of the coefficients is very
small, ∼ 0.08%, so we neglect it.
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Figure 3.22: Ratio between the coefficients obtained in calibration session 19 Oct and 17
Oct. The ratio for blocks located in the edges of the calorimeter is shown in red. (VCh).
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Figure 3.23: Ratio between the coefficients obtained in calibration session 25 Oct and 19
Oct. The ratio for blocks located in the edges of the calorimeter is shown in red. (VCh).
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Figure 3.24: Ratio between the coefficients obtained in calibration session 26 Oct and 25
Oct. The ratio for blocks located in the edges of the calorimeter is shown in red. (VCh).
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Figure 3.25: Ratio between the coefficients obtained in calibration session 17 Nov and 26
Oct. The ratio for blocks located in the edges of the calorimeter is shown in red.
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Figure 3.26: Ratio between the coefficients obtained in calibration session 18 Nov and 17
Nov. The ratio for blocks located in the edges of the calorimeter is shown in red. (VCh).
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Figure 3.27: Ratio between the coefficients obtained in calibration session 14 Dec and 18
Nov. The ratio for blocks located in the edges of the calorimeter is shown in red.
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For the calibrations Elastic 2 (25 Oct) and onwards (the ones employed for data
analysis, without the issues of having disconnected blocks), we observe a trend of higher
transparency loss for the blocks located on the left of the surface of the calorimeter (higher
block number), whenever there is a big lapse of time (17 Nov/ 26 Oct and 14 Dec/ 18
Nov). This is consistent with the fact that these blocks are nearer to the electron beam
than the rest. For the case of the two last calibration sessions, (14 Dec/ 18 Nov), it
appears as if most of the blocks had gained transparency, contrary to what one might
have expected. This is due to an increase in the gain , G, of the PMTs during that period,
which resulted in the overall decrease of the coefficients for the calibration session of 14
Dec [60]. The voltage of each PMT is adjusted in order to keep a constant gain during
the whole experiment. Figure 3.28 shows the variation in the PMTs voltage needed to
maintain the gain at a constant value, and compares it to a previous JLab experiment
focused on DVCS [61]. The fact that the voltage had to be decreased, as shown in the
figure, indicates that the PMTs were working at a higher gain value that the one expected.

Figure 3.28: Variations observed during the first experiment (black) and those observed
during the second experiment (red), relative to the beginning of each experiment. Notice
that the same PMT was not in the same trigger number (horizontal axis) for both 2004
and 2010 experiment.

For the cases where there is almost no lapse of time between calibrations (26 Oct/ 25
Oct) and (18 Nov/ 17 Nov), we see that for most of the blocks the coefficients are stable.





Chapter 4
Background subtraction and extraction of
observables

Contributions from different sources besides DVCS reactions alter our data and must be
removed. Most of the undesired detections are discarded by applying cuts in kinematic
variables. These variables are related to the detectors geometry, like for example: the ac-
ceptance of the HRS or the target impact point. But not all the removal can be done with
cuts, the subtraction of the π0 electroproduction contribution must be tackled in some
other way, as well as the subtraction of accidental detections. Finally, radiative correc-
tions are taken into account, as well as the inclusion of DVCS events found in multicluster
events. Once all cuts, background removal and other corrections have been applied, we
will be left with the final data, which we will employ in cross section computations. These
computations are done with the help of a Monte Carlo simulation, which main character-
istics are shown in this chapter.

At the end of the chapter, the different cross sections for the photon leptoproduction
process as well as the comparison between data and Monte Carlo simulation, for every
studied kinematics, are shown.

4.1 Events selection

During the data acquisition, the calorimeter registers the energy of particles coming from
different kinds of events. In order to minimize the impact of the detections not coming
from DVCS reactions, we make a selection of events. This selection is made applying dif-
ferent cuts to some kinematic variables related to the target, the HRS and the calorimeter.

80



Background subtraction and extraction of observables 81

4.1.1 Target, impact point

Due to the aluminum cylindrical target cells in which the target is placed, not all scattered
electrons come from the LH2 or LD2 materials. Since we can reconstruct the impact point
of the beam on the target, using the data from the HRS, it is possible to check whether
or not there was an interaction with the desired target.
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Figure 4.1: Target impact point. -0.06m <Selected events <0.07m.

Figure 4.1 shows the impact point with the target along the beam line. The peaks in
both sides of the histogram come from impacts on the aluminum cell, rich in protons. To
avoid taking these interactions as data we impose a cut on the target between -0.06m and
0.07m.

4.1.2 HRS efficiency

We saw in chapter 2 that one of the main components of the HRS is a Čerenkov detector.
This detector is employed for electron identification, and, with the scintillator plane S2,
it serves as trigger for the HRS. It is important to keep track of the Čerenkov detector’s
efficiency in electron identification because a low efficiency would result in missing too
many DVCS events. A set of runs (efficiency runs) were taken with this purpose. How-
ever, the trigger system for those runs did not include the Čerenkov detector, since it is
not possible to study the efficiency of a detector if it is serving as trigger. Instead, the
scintillator planes S1 and S2 were used as trigger for the efficiency runs.

When measuring the efficiency of the detector we want to be sure that the particles
arriving at the device are electrons. Pions are an important source of background for
this matter. In order to discriminate pions from electrons, an electromagnetic calorimeter
(pion rejector) was employed. Electrons arriving at the pion rejector deposit more energy
than pions, since electrons create purely electromagnetic showers, so a cut in energy was
set in order to select the electrons [62]. However, specially at low momentum, pions have
a small probability to create hadronic showers and thus lose all of their energy. To evalu-
ate this effect, the pion rejector spectrum is fitted by the sum of a Gaussian distribution
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with a radiative tail S(E) for the electrons and a second order polynomial for the pions.
The proportion of electrons detected by the Čerenkov detector from the total of the pion
rejector electron detections is known as the efficiency of the Čerenkov detector. The re-
sults of the study show a constant efficiency of 98.5% from run 8302 until the end of the
experiment. Before run 8302 the efficiency was 95% due to a higher energy threshold set
on the Čerenkov detector. This only affected a part of the Kin 3-low kinematics, and
therefore, in overall, the results for the efficiency are satisfactory.

The efficiency of the scintillator planes S1 and S2 was studied as well. For this purpose,
two types of events were taken into account: the ones with a detection from the Čherenkov
and S1 and the ones with a detection from the Čherenkov and S2. The efficiency was
computed by comparing the response of S1 to the response of S2, with the appropriate
event type. A more detailed explanation of the process can be found in [63]. S1 is
composed of six paddles with two PMTs in each side (left and right), while S2 is composed
of sixteen paddles with also two PMTs in each side. We show the efficiency of each set of
paddles (left, right) for every efficiency run in Figure 4.2, where we observe that the four
sets have about 99% efficiency.

Figure 4.2: Left: Efficiency for S1 (top) and S2 (low) left PMTs. Right: Efficiency for S1
(top) and S2 (low) right PMTs.
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4.1.3 HRS acceptance

The trajectory of particles detected by the spectrometer is determined by its magnetic
field. For every initial line of flight and momentum of the particle at the spectrometer
entrance, there is a definite trajectory of the particle, which results in either the parti-
cle passing through the spectrometer to its focal plane, or getting absorbed by internal
spectrometer apertures. The region of solid angle where particles, for a certain range
of momentum, can be detected is called the acceptance of the detector. For purposes
of cross-section extraction, software cuts are usually placed on the reconstructed target
variables to select a region inside the “good acceptance” region. Placing the cuts so that
they define a large region but still lying within the “good acceptance” region allows to
include more particles in the cross-section analysis.

In order to compute the acceptance of the HRS into the analysis of cross sections,
a Monte Carlo simulation is employed [64], so the cut applied in the acceptance must
be the same for both, data and simulation. However, the acceptance region is a rather
complicated region described by 4 different geometric variables. This is the reason why
the cut is applied by defining a R-function. R-functions are real-valued functions that
allow the use of equations that serve as boundaries of geometrical objects. We are able to
construct functions that are equal to 0 on the boundary of the objects, and have different
signs inside and outside the objects. In addition, the absolute value of an R-function is
related to the distance to the boundaries of the geometrical object. The four variables
that define the acceptance region read

ye′ = −vertex× k′x/
√
k′2x + k′2z ,

θe′ = atan(k′y/
√
k′2x + k′2z ),

φe′ = atan(k′x/k
′
z)− φHRS,

dp =

√
k′2x + k′2y + k′2z − pcentral

pcentral,

(4.1)

where ye′ is the displacement, in the transverse plane, of the trajectory relative to the
HRS reference trajectory, θe′ is the vertical angle taking a positive value when pointing
towards the floor and φe′ is the horizontal angle in the spectrometer frame. The R-
function employed for the HRS acceptance has been calculated in previous experiments
[65]. Applying a positive cut on the value of the HRS R-function, rval, will diminish
the acceptance region approximately uniformly across all its boundaries, while cutting on
negative values of rval will increase the acceptance region. The value of this cut is

rval > 0.005. (4.2)
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Sometimes the HRS detects more than one particle at a time. The VDC system and
the tracking algorithm are not suited to reconstruct correctly the trajectories for these
events. As we cannot perform any acceptance cut on these events, we remove them
from the analysis. A correction must by applied in order to account for this removal of
detections. In order to apply the correction we can make use of the data stored by the
pion rejector. We can observe the energy deposit in the pion rejector of the multitrack
detections to get some information about the composition of these events.

Figure 4.3: Energy deposit in the pion rejector according to the number of tracks.

As we observe in Figure 4.3, only 2-track events show a clear electron peak. The rest of
multitrack events are mainly low energy events, which indicates that they are more likely
pions creating secondaries particles in the VDC. Therefore, we dismiss the multitrack
events with more than two tracks and express the multitrack correction as

ηMulti = 1 +
N2

N1

, (4.3)

where N1 and N2 stand for the amount of 1-track and 2-track events. Only those events
with an deposited energy above Emin > 1 GeV are included inn the computation. This
threshold depends on the HRS central momentum.

During the experiment, the HRS collimator was mislocated, obstructing the path of
the scattered electrons. We can appreciate this phenomenon by comparing the data from
experiment, after applying the acceptance cut, with the Monte Carlo simulation [66]. We
observe, from the figure on the left in Fig.4.4, that a band is missing from the data in
the lower part of the collimator plane (defined by xcol and ycol). This was due to the
collimator mislocation. We were able to correct this issue by applying a cut inside the
real collimator plane,
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−0.0275m < xcol < 0.0275m,

−0.05m < ycol < 0.055m.
(4.4)

Figure 4.4: Left: comparison between the location of the collimator according to the
Monte Carlo simulation (red) and according to the data (black). Right: comparison be-
tween the Monte Carlo simulation and the data (correlation between ycol and the deviation
of the particles momentum from the central momentum of the HRS).

In addition to this problem, a small error in the R-function was detected. This can
be visualized in figure 4.4 (right), where we observe the missing bands in the data when
studying the correlation between ycol and the deviation of the particles momentum from
the central momentum of the HRS. For this matter it was necessary to add a cut between
dp/p and ycol:

0.009

0.115
(ycol + 0.055)− 0.045 <

dp

p
<

0.02

0.08
(ycol + 0.05) + 0.032 (4.5)

4.1.4 Calorimeter, geometrical cut

The geometrical cut in the calorimeter addresses the problem of the poor energy recon-
struction in the blocks located in the borders of the calorimeter. To avoid processing data
from these events, any photon impacting on any of the blocks of the borders is discarded.
The cut is applied on the variables x and y, that define the plane on the surface of the
calorimeter.

−21cm < x < 12cm,

−21cm < y < 21cm.
(4.6)
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The cut can be visualized in figure 4.5. It selects all the particles with an impact point
inside the red frame. The whole surface of the calorimeter is indicated by the blue frame,
while the black region corresponds to all the registered impact points for one kinematic.
We can observe how the region between the red and the blue lines (which corresponds
to the blocks in the borders of the calorimeter) is only partially covered with impacts.
As explained in section 3.2, the impact point is calculated by weighting the deposited
energy in all the blocks in a cluster. The fact that the blocks in the border are not fully
surrounded by other blocks makes it impossible for the impact point computation to yield
an impact point in the border regions.

Figure 4.5: (Black) Impact points in the calorimeter surface for all Kin 3-high detections.
(Red) Geometrical cut in the calorimeter surface. (Blue) Real surface of the calorimeter.

4.2 Background subtraction

Besides applying cuts to some variables, it is necessary to use different techniques to re-
move background detections. For this purpose, π0 and accidental detections were studied.

4.2.1 π0 subtraction

The production of a π0, as a result of the interaction of the electron beam with the
target, is a reaction that takes place during the experiment and it is a cause of background
detections. The emission of a gluon, and its fragmentation into a quark and an anti-quark,
unravels the formation of a π0 and the scattering of the proton. The anti-quark couples
with a quark from the proton to form a π0. Figure 4.6 shows this process as a schematic
diagram [67]. Later, the π0 will decay into two photons, π0 → γ1 + γ2, creating a source



Background subtraction and extraction of observables 87

of background in DVCS detections. We can identify three different cases whenever there
is a π0 decay:

Figure 4.6: Diagram of the π0 electroproduction.

• None of the photons reaches the calorimeter: then we have no detection and our
data aren’t affected.

• Only one, γ1 or γ2, is detected: this is the cause of the background. A priori, it
is not possible to identify whether the photons come from a DVCS or a π0 decay
reaction.

• Both γ1 and γ2 are detected: this will not interfere with our DVCS data since
the calorimeter will form two clusters. We will use these events to perform the π0

subtraction.

There are different approaches to subtract the π0 contribution. One could evaluate
the cross section of this process within the solid angle of the experiment, and perform
the subtraction. However, we opted for a simulation of randomly generated π0 decays
through which the previous computation is unnecessary, similar to the one used in a
previous DVCS dedicated experiment in Hall A [68]. The method begins by selecting
events where two clusters were formed, searching for two photons coming from π0 decays.
Among these events we will select those with an invariant mass for (γ1 + γ2) close to that
of the π0 (between 0.1 GeV and 0.17 GeV, which is a range of 3σ around the peak of the
Mπ0 distribution studied in section 3.3.2). We use this invariant mass to create random
π0 decays and observe whether the resulting photons hit the calorimeter or not, in order
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Figure 4.7: Two different kinds of π0 decays, in the pion center of mass and in the
laboratory frame (after applying the corresponding boost).

to compute the contribution of this phenomenon.

The angles formed between the photons direction, in the π0 center of mass frame, and the
direction of the boost (the boost is applied to study the decay in the laboratory frame),
are randomized 5000 times for each real π0 decay we detected. This means that we now
have 5000 times the amount of decays we had, all of them decaying isotropically in the
center of mass frame. The next step is to apply a boost in the direction of γ1 + γ2. This
boost is extracted from the real event, and applied to the randomized decays, in order
to check whether or not the calorimeter might have detected the resulting photons from
the decay. We do this for every real decay event we selected. For the computation of the
boost, we use the momentum of γ1 + γ2. Figure 4.7 shows two different situations when
applying the boost to a random decay. The first one, in which the direction of the boost
is perpendicular to the directions of the photons in the pion center of mass frame, will
lead to a symmetric decay in the laboratory frame, in which both photons will have the
same energy and angle with the boost direction. In this case, the transverse momentum
of the photons is Mπ0/2 in both frames. In the lab frame, the photons total momentum
will be equal to their total energy, which is just Eπ0/2. The minimum angle of separation
is given by

sin
(αmin

2

)
=
Mπ0

Eπ0

. (4.7)

For the kinematics of the experiment, the maximum energy of the pions, at which the
angle of separation between the photons is minimum (αmin), is about 3 GeV. This renders
a minimum angle (αmin) of 0.09 rad, which can be expressed as a separation distance of
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about 10cm in the calorimeter surface (the distance from the target to the calorimeter is
1.1 m). This distance ensures a separation of two blocks between each of the two photons
hitting the calorimeter, and thus, the consequent formation of two different clusters if
both photons are detected by the calorimeter. The minimal angle makes it impossible to
detect two photons in the edges of the calorimeter, causing a source of systematic errors.
It is possible to apply a fiducial cut on the calorimeter, corresponding to the area where
the π0 subtraction procedure is fully efficient [69]. However, the results presented in this
thesis do not include this cut. In the case where the direction of the photons forms an
angle θ 6= 90 deg with the direction of the boost, we will find an asymmetric decay in the
laboratory frame. Here it may happen that none of the photons reaches the calorimeter,
or only one or both of them are detected.

The surface of the calorimeter is introduced in the simulation to observe which kind
of detection we have for every randomized event. We must not forget the threshold set
in the calorimeter that triggers the clustering algorithm. Even if one of the randomized
photons reaches the calorimeter it may be discarded due to its low energy. The decay
of the π0 is placed at the target impact point, since it is not expected to cover a long
distance, due to its short mean lifetime.
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Figure 4.8: π0 subtraction events as a function of M2
X (Kin 3-high).

The purpose of the randomization is to subtract each of the events in which one, and
only one, of the photons from the randomized decay is detected, from the corresponding
experimental bin of DVCS events, according to its kinematics. Figure 4.8 shows the π0

subtraction of events as a function of M2
X (missing mass) for the one-cluster events. The

M2
X variable accounts for the undetected energy in the experiment and can be expressed

as

M2
X = (e′ + γ − e− p)2. (4.8)
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All contributions from the initial and final electrons (e, e′), the real photon (γ) and the
initial proton (p) are expressed in four-vectors. DVCS events are selected from one-cluster
events where M2

X < (Mp + Mπ0)2. This means that the undetected energy belongs to a
scattered proton, as we would expect from a DVCS reaction. The cut is set at 1.15 GeV2.
In order to subtract one histogram from another, events coming from the randomization
have been applied a factor 1/5000 that accounts for the number of generated decays for
each event.

W =
1

5000
· n0 + n1 + n2

n2

=
1

n2

(4.9)
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Figure 4.9: π0 subtraction as a function of ϕγ, for events with M2
X < 1.15 GeV 2

(Kin 3-high).

where n0, n1 and n2 stand for the number of zero detections, one photon or two photon
detections counted during the randomization (n0 + n1 + n2 = 5000). The weight W
takes into account that only two-cluster events, from the real events, were used for the
subtraction through the factor (n0 + n1 + n2)/n2. Figure 4.9 shows the π0 subtraction of
events as a function of the angle between leptonic and hadronic planes in DVCS reactions
ϕγ. The subtraction accounts for 16% of the raw data.

4.2.2 Accidentals subtraction

The accidental background refers to detections of unrelated particles in both detectors: the
photon detected in the calorimeter coming from a different reaction to that of the electron
being detected in the HRS. This kind of detections is impossible to distinguish from the
desired ones, so we calculate their contribution using the data from the experiment. The
procedure is as follows: data resulting from the waveform analysis are processed by the
clustering algorithm, but instead of selecting events with a tevent between -3ns and 3ns, the
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time window is shifted at two different positions, between -11ns and -5ns and between 5ns
and 11ns. Since the accidental background is time independent, it is the same no matter
where the time window is set, but DVCS events don’t appear in the new positions. By
applying this method we find the pattern of accidental detections that we subtract from
data. In a similar way as we did for π0 contamination, we extract each accidental event
from the corresponding experimental bin of DVCS events, according to its kinematics. We
use the accidentals obtained from both time windows, adding them and weighting them
by 0.5, since both should have equal value. The purpose of having two time windows
is to increase the statistics. Figures 4.10 and 4.11 show the accidental subtraction for
kinematics Kin 3-high. We can observe the high rates of accidental detections around the
beam direction (around 0◦).
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Figure 4.10: Accidental subtraction as a function of M2
X (Kin 3-high).
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Figure 4.11: Accidental subtraction as a function of ϕγ, for events with M2
X < 1.15 GeV 2

(Kin 3-high).
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4.3 Radiative corrections

QED radiative corrections provide an important contribution to the ep→ epγ reaction, as
observed in the measurements in MAMI [70], the first absolute measurement of the VCS
cross section on the nucleon. These corrections are of the order of 20% in the kinematics
considered in [70]. The calculation of these QED radiative corrections has been studied
in detail in [71] to first order in αem, taking into account corrections from both, BH and
VCS reactions.

Radiative corrections are usually expressed in terms of internal and external correc-
tions. The external radiative corrections enclose the radiation of bremsstrahlung photons
by the electrons passing through a material. The external correction is applied before
the initial electron impacts the proton in the LH2 target, and takes into account the
bremsstrahlung created when the electron passes through the target. The energy loss of
the electron due to this phenomenon is calculated through the approximation [72]

Iext(E0,∆E, d) =
bd

Γ(1 + bd)

(
∆E

E0

)bd [
1

∆E

(
1− ∆E

E0

+
3

4

(
∆E

E0

)2
)]

, (4.10)

where E0 is the initial kinetic energy of the electron (Eb in our case), b ' 4/3, and
d is the thickness of the material expressed in radiation length units (d < 0.05 in the
approximation). The acceptance is usually computed through a Monte Carlo simulation
of the experimental apparatus, where all the resolutions of all detectors are included.
In the case of the simulation the energy loss ∆E is generated randomly through the
expression [73]

Eext = E0R
1/bd
0 , (4.11)

Here, R0 is a uniform random variable from the interval [0,1]. This generates an external
radiation distribution

Iext(E0,∆E, d) =
bd

∆E

(
∆E

E0

)bd
(4.12)

which is an approximation of (4.10) that reproduces the dominant 1/∆E behaviour. On
the other hand, the internal radiative corrections can be divided into two different contri-
butions, virtual corrections and real corrections. The real radiative diagrams include the
emission of a real photon by any electron line while the virtual corrections include vertex
and vacuum polarization corrections. The experimental cross section can be expressed as

dσ

dΩ

∣∣∣∣
Exp

=
dσ

dΩ

∣∣∣∣
Born

[1 + δV irtual + δReal(∆E)] , (4.13)
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where the “Born cross section” is the hypothetical cross section that would be valid if
QED stopped at the lowest order of perturbation theory. The individual terms for each
of the contributions of the internal radiative diagrams read [71]

δV acuum =
2α

3π

[
ln

(
Q2

m2
e

)
− 5

3

]
(4.14)

δV ertex =
α

π

[
3

2
ln

(
Q2

m2
e

)
− 2− 1

2
ln2

(
Q2

m2
e

)
+
π2

6

]
(4.15)

δReal =
α

π

{
2 ln

(
∆E√
EE ′

)[
ln

(
Q2

m2
e

)
− 1

]
−1

2
ln2

(
E

E ′

)
+

1

2
ln

(
Q2

m2
e

)
− π2

3
+ Sp

(
cos2 θe

2

)} (4.16)

Note that the term δReal has a contribution that depends on the integration cutoff ∆E, as
well as a term independent of ∆E. These terms originate from photons of two different
kinematic domains: soft photons, whose energy is less than the experimental resolution
(originate the ∆E independent term), and photons whose energy is resolvable, and might
generate events that are included in the integrated cross section. These photons generate
a radiative tail in the missing mass and must be taken into account in the computation of
the solid angle or acceptance. In the case of the Monte Carlo simulation these corrections
are computed using the equivalent radiator technique [75], which assumes that the internal
radiation is equivalent to placing one radiator before the scattering and another radiator
of the same thickness after the scattering. The correction is applied twice, once before
the scattering (Eint

1 ) and once after the scattering (Eint
2 ).

Eint
1 = EextR

2/ν
1

Eint
2 = E ′R

2/ν
2

with ν =
α

π

[
ln

(
Q2

m2
e

)
− 1

]
. (4.17)

ν plays the role of the equivalent radiator thickness (bd). E ′ is the energy of the electron
after the scattering and R1 and R2 are uniform random variables from the interval [0,1].

The virtual radiative corrections do not modify the kinematics of the reaction. The
diagrams of the processes involved in the virtual corrections are shown in figure 4.12.
These are one-loop virtual radiative corrections originating from the electron side and,
for the case of BH, they can be calculated model-independently. The corrections to the
BH process contain vertex corrections: figs. 4.12 (V1i - V3i) and (V1f - V3f); electron
self-energy corrections: figs. 4.12 (Si, Sf); and vacuum polarization corrections: figs. 4.12
(P1i, P1f). The captions of the figures indicate whether the photon in the ep → epγ
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reaction is emitted from the initial (i) electron or from the final (f) electron. For the case
of DVCS processes, the virtual radiative corrections can be divided into model dependent
and model independent. Those which can be calculated model-independently, consist on
the vertex diagram shown in figure 4.12 (V4), and the vacuum polarization diagram shown
in 4.12 (P2). The virtual corrections along with the contribution from soft photons of the
real corrections are nearly constant for the phase space of interest. They can be applied
as a constant factor to the measured data, which in our case has a value of 1/1.1 [74].

Figure 4.12: First order virtual photon radiative corrections to the ep→ epγ reaction.

4.4 Multicluster correction

Until now, all events coming from DVCS reactions have been selected from one-cluster
events. We have to take into account that there might be DVCS events processed as two-
cluster events, due to the formation of accidental clusters besides the clusters formed by a
DVCS photon. Those events should not be discarded due to our analysis scheme, therefore
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we treat every signal from the two-cluster events package as DVCS event candidates. By
this, we mean that all the previous cuts are applied to the selection, including the cut
in the missing mass. Since we have two detections for every two-cluster event, M2

X is
calculated as if we only had detected one of them. We do this for both photons of the
same event. Finally, we add the contribution from two-cluster events to our initial one-
cluster DVCS events. The contribution of this correction accounts for about 7% from
the total raw data. Figures 4.13 and 4.14 show the multicluster correction applied for
kinematics Kin 3-high.
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Figure 4.13: Multicluster correction as a function of M2
X (Kin 3-high).

0 50 100 150 200 250 300 350
0

1000

2000

3000

4000

5000

6000

7000

Raw data

Multicluster

Final data

Figure 4.14: Multicluster correction as a function of ϕγ, for events with M2
X < 1.15 GeV 2

(Kin 3-high).
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4.5 Final data

The final data (for Kin 3-high) used for the extraction of observables that will lead to a
DVCS cross section calculation are shown in Figures 4.15 and 4.16. These figures include
the cuts, background subtraction, and corrections mentioned before. In all the figures
where M2

X is plotted we can observe a peak around M2
p . This is what one would expect

since the recoil proton is not detected. All experimental runs are analyzed individually
(including the background subtraction) and the resulting data are put together according
to their kinematics.
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Figure 4.15: Final data as a function of M2
X (Kin 3-high).
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Figure 4.16: Final data as a function of ϕγ, for events with M2
X < 1.15 GeV 2

(Kin 3-high).
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4.6 Systematic errors

Systematic errors are errors which are not determined by chance but are introduced by
inaccuracies in the equipment or flaws in the design of the experiment. This type of errors
cannot be estimated by repeating the experiment with the same equipment. One source
of error comes from the cut applied in the “Missing mass” variable. This cut takes the
form of (Mp + Mπ0)2, in order to constrain the selection of events to those in which the
missing mass corresponds to a scattered proton only. Ideally, the cross section is inde-
pendent of this cut. Therefore, if we varied the value of the cut ( M2

X <1.1 GeV2 for this
matter) the resulting cross section should not differ from the original one. The variation
between both cross sections is an estimation of the systematic error induced by this cut.
Figure 4.17 shows the ratio between lepton photoproduction cross sections obtained with
two different cuts for M2

X (for five different bins in t). The variation between both is, in
overall, about 2%. There are other sources of systematic errors in the experiment, such as
the one due to the edges of the calorimeter, or the uncertainty in the calorimeter energy
threshold. However, I did not have the time to address these issues during the duration
of my thesis, but it remains as work to do.

A study of the DIS cross section has been performed in [69]. The experimental cross
sections have been compared to a parametrization of the DIS cross section with the kine-
matics employed in the experiment. The discrepancies in the values of the cross sections
vary up to a value of 3.5 %, depending on the studied kinematic. We can use this infor-
mation to evaluate, in a preliminary way, the impact of the systematic errors in the DVCS
experiment. The study of DIS reactions does not include the electromagnetic calorimeter,
but apart from that, the geometry and efficiencies of the rest of the devices, included in
the computation of the cross section, are the same as for DVCS reactions. Then, the
major difference between the systematic errors appearing in DIS and DVCS reactions
would come from the efficiency and acceptance of the electromagnetic calorimeter. This
device collects 99.9% of the electromagnetic shower created by the detected photons, and,
since the poor energy reconstruction in the borders has been addressed, we can conclude
that the contribution of systematic errors from these factors (calorimeter efficiency and
acceptance) is negligible. Table 4.1 shows the systematic errors studied in [69].
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Figure 4.17: Comparison of the experimental cross section (Kin 3-high) at two different
cuts for M2

X , for five different bins in t. The plots show the ratio of the experimental
points with M2

X <1.1 GeV2 and the experimental points with M2
X <1.15 GeV2. Error

bars for each cross section have been obtained by fitting experimental data to a Monte
Carlo simulation (this is addressed later in the chapter).

Source Systematic error
Charge 2%

Dead time 1%
HRS efficiency 1%

HRS acceptance 1%
Multitrack events 0.5%

Radiative corrections 2%
Quadratic total 3.5%

Table 4.1: Systematic errors coming from the study of DIS data, taken concurrently with
the experiment E07-007.
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The main contributions to the systematic errors come from the fluctuation in the mea-
surement of the beam charge and the radiative corrections. The fluctuation in the charge
measurement appears as a result of a recalibration of the BCM during the experiment.
The QED radiative corrections studied in [69] are for the DIS case. Besides all these
corrections we must include the contribution coming from the cut in the missing mass.
We studied this systematic error for the Kin 3-high kinematic, and found a value of 2%
for this case. Further study should be performed for this matter, analysing the rest of the
kinematics and including different values for the cuts. With all we could expect a total
systematic error of about 5%.

4.7 Monte Carlo Simulation

A Monte Carlo simulation of the experiment was conducted in order to include geometry
and resolution effects [64], such as the HRS acceptance, in the computation of the cross
sections. It was performed using GEANT4, which is a platform for the simulation of the
passage of particles through matter [76].

The simulation includes the main devices employed during the experiment: the scat-
tering chamber along with the upstream and downstream beam pipes, the target, the
calorimeter, the shieldings that protected the calorimeter from secondary particles, and
the HRS. The latter is implemented as a virtual surface, simulating the HRS front window,
which extracted the energy of electrons that reached it. For all the other components, the
simulation requires their geometry, the material they are made of (along with its prop-
erties: density...), and their relative position to one another. Also, the properties of the
area enclosed by them are included (vacuum, air...). In this simulation the calorimeter is
very detailed. It is composed of the 208 blocks, forming 13 columns and 16 rows, includ-
ing their geometry and material properties, as well as wrapping materials, PM carriers,
screws... and the frame that holds them together.

In the experiment only the scattered electron and the photon were detected. These
particles are the ones tracked by the simulation. Their generation is done using an event
generator which generates events in DVCS kinematics. In order to match the specific
kinematics used in the experiment, the beam energy as well as the HRS angle and central
momentum are included in the simulation. Also, the calorimeter angle and the distance
from the target have to match that of the experiment. The scattered electrons are ob-
tained by generating Q2 in the range [Q2

min : Q2
max], where Q2

min and Q2
max are constrained

by the HRS angle and momentum. The kinematic variable t is also uniformly generated
between a range [tmin : tmax] of kinematically allowed values. The last step of the simu-
lation is to generate a uniform random angle around the beam axis within the vertical
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Figure 4.18: Simulation setup. Including vacuum chamber and beam pipes (yellow),
Kapton window (magenta), calorimeter shielding (green), HRS front window (light-blue)
and calorimeter.

angular range of the HRS, and check whether the electron and photon are detected.
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Figure 4.19: Comparison between data and simulation through the missing mass variable.
Left: Kin 3-high, right: Kin 3-low. The simulation line is scaled in order to match the
data.

In order to be able to compare experiment results to the Monte Carlo simulation, all the
cuts mentioned in previous sections are applied to the simulation as well, including the
cut in the M2

X and the radiative corrections. Finally, we obtain the number of DVCS
events registered by the simulation as a function of the angle ϕγ which we will use for
the extraction of observables from data. We observe in figure 4.19 how the simulation
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matches the data in the region of interest. Note the peak around M2
p ' 0.88(GeV ) for

the recoiled proton.

4.8 Extraction of observables

Following the theoretical development from chapter one, we express the photon electro-
production helicity-independent cross section, for the case of an unpolarized target, as

d4σ

dxd|∆2|dφdQ2
= ΓG|TBH |2 + Γ1CIunp(F) + Γ2∆CIunp(F) + Γ3CIunp(F eff ). (4.18)

In this case, our set of unknowns will include the observables CIunp(F), ∆CIunp(F) and
CIunp(F eff ). Note that in 4.18 the CDV CSunp (F ,F∗) term is omitted from the expansion (see
(1.61)). Its contribution will be embedded in the resulting calculation of the observables
CIunp(F) and ∆CIunp(F), and the disentanglement of these three terms will be the goal of
the subsequent “Rosenbluth separation”. Additionally, our cross section depends only on
four variables. We integrated over ϕ, since this variable contains no physics, and replaced
the cross section dependence on the kinematic variable y by the dependence on Q2, both
related through the expression Q = Ebεy. The different kinematic factors multiplying the
CFFs read:

Γ1 = ΓG · ΓI ·
{
−8(2− y)

[
(2− y)2

1− y
K2 +

∆2

Q2
(1− y)(2− xB)

]
− 8K(2− 2y − y2) cos(φ)

}
,

(4.19)

Γ2 = ΓG · ΓI ·
{
−8(2− y)

∆2

Q2
(1− y)(2− xB)

}
, (4.20)

Γ3 = ΓG · ΓI ·
{
−16K2

2− xB
(2− y) cos(2φ)

}
, (4.21)

where ΓG is a global factor of the photon leptoproduction cross section and ΓI is the
factor multiplying the Fourier decomposition of the interference amplitude,

ΓG =
α3xBy

16π2Q2
√

1 + ε2
· π

EbxBMp

ΓI =
1

xBy3∆2P1(φ)P2(φ)
. (4.22)
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The collected data from the experiment are in terms of event counts, which for a
determined phase space bin Ni, we can relate to the average cross section over the bin,

Ni = L
∫
i

dσ

dΩ
dΩ = L

∫
i

dσ

dΩ
dΩ∫

i
dΩ

∫
i

dΩ = L
〈
dσ

dΩ

〉
i

∆Ωi, (4.23)

were L stands for the luminosity of the electron beam. For electrons of a total charge Q
passing through a LH2 target with a density ρ and length l, the integrated luminosity is
given by ∫

Ldt =
Q

e

NA · ρ · l
AH

, (4.24)

where e = 1.602 ·10−19 C is the electron charge, AH = 1.0079 g/mol is the atomic mass of
the hydrogen, and NA = 6.022 · 1023 mol−1 is Avogadro’s number. The charge Q passing
through the target in a run is given by the BCM (section 2.3.2). The length of the LH2

target is 15cm, with a density of 0.0723 g/cm3 for the experiment conditions (section 2.4).

At this point we can correlate our data to the photon leptoproduction cross section,
thanks to (4.23). In order to include the detection geometry and the resolution effects
in our calculus we employ a Monte Carlo (MC) simulation. We will use the simulation
altogether with the experimental data, to fit the parameters of (4.18), and compute the
cross section. When applying a binning to the kinematic variables, some issues arise. The
binning reduces the impact of the variation of the kinematic factors, but we must take
into account the effects of bin migration, caused by the resolution of the detectors. The
study of this bin migration is performed by the Monte Carlo simulation. By defining
the kinematic variables on the vertex, xv, and observing the distribution of the variables
reconstructed by the detectors, xe, for every simulated event, we can implement the
mapping function,

M(xv|xe), (4.25)

which represents the conditional probability to observe an event at the kinematic point xe,
starting from the vertex point xv. For binning purposes we define the binning vectors jv
and je, which label a set of kinematic variables from xv and xe respectively, and introduce
the binning in the variables t and ϕγ. We will represent the photon leptoproduction cross
section in terms of these two variables. We can now rewrite (4.23) using (4.18) and the
binning vectors,

N(jv) = L
∫
xv∈Bin(jv)

3∑
Λ=0

ΓΛ(xv)X
Λ
jvdxv = L

3∑
Λ=0

XΛ
jv

∫
xv∈Bin(jv)

ΓΛ(xv)dxv, (4.26)
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where we used that

d4σ(xv) =
3∑

Λ=0

ΓΛ(xv)X
Λ
jv with


Γ0(xv)X

0
jv = ΓG(xv)|TBH |2jv

Γ1(xv)X
1
jv = Γ1(xv)CIunp(F)jv

Γ2(xv)X
2
jv = Γ2(xv)∆CIunp(F)jv

Γ3(xv)X
3
jv = Γ3(xv)CIunp(F eff )jv


(4.27)

For the case of the bins containing the kinematic variables reconstructed by the detectors
we have

N(je) =

∫
xe∈Bin(je)

∑
jv

N(jv)M(xe|xv)dxe

=L
∑
jv

3∑
Λ=0

XΛ
jv

∫
xe∈Bin(je)

∫
xv∈Bin(jv)

ΓΛ(xv)M(xe|xv)dxedxv.
(4.28)

Here we redefine our mapping function so it represents the conditional probability of bin
migration between je and jv,

MΛ
je,jv =

∫
xe∈Bin(je)

∫
xv∈Bin(jv)

ΓΛ(xv)M(xe|xv)dxedxv, (4.29)

which leads us to the more compact relation for the number of counts in the experimental
bin, N(je), which being the case of a Monte Carlo simulation we will rename by NMC(je),
in order to differentiate it from the real detections in the laboratory, NExp(je).

NMC(je) = L
∑
jv ,Λ

MΛ
je,jvX

Λ
jv . (4.30)

We are now in position of extracting the observables XΛ
jv by fitting our experimental

data NExp(je), using the Monte Carlo simulation NMC(je). We begin by defining a χ2

that relates both measures,

χ2 =
∑
je

[
NExp(je)−NMC(je)

]2
[σExp(je)]

2 . (4.31)

Here we introduced the error for the number of experimental counts for a bin je, σ
Exp(je),

which is simply
√
NExp(je). To obtain the CFFs we minimize our χ2 with respect to the

XΛ
jv coefficients,

0 = −1

2

∂χ2

∂XΛ
jv

∣∣∣∣∣
X

Λ
jv

, (4.32)
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where the coefficients X
Λ

jv are defined as the values of XΛ
jv that minimize our χ2. Substi-

tuting the definition of NMC(je) from (4.30) into our minimization renders

0 =
∑
je

LMΛ
je,jv

L
∑
j′v ,Λ

′

MΛ′

j′e,j
′
v
X

Λ′

j′v
−NExp(je)

[σExp(je)]
2 . (4.33)

We can express the last equation in a matricial form by defining the matrix αΛ,Λ′

jv ,j′v
and the

vector βΛ
jv through the following expressions:

αΛ,Λ′

jv ,j′v
=
∑
je

L2
MΛ

je,jvM
Λ′

j′e,j
′
v

[σExp(je)]
2 , (4.34)

βΛ
jv =

∑
je

L
MΛ

je,jvN
Exp(je)

[σExp(je)]
2 , (4.35)

which simplify the expression for the minimization.

0 =
∑
j′v ,Λ

′

αΛ,Λ′

jv ,j′v
X

Λ′

j′v
− βΛ

jv . (4.36)

Finally we reach an expression for the fit parameters, CFFs in our case, that implies the
inversion of the matrix αΛ,Λ′

jv ,j′v
and its subsequent multiplication by βΛ

jv . This computation

will give us a vector with the different values for each X
Λ

jv ,

X
Λ

jv =
∑
j′v ,Λ

′

[α−1]Λ,Λ
′

jv ,j′v
βΛ′

j′v
. (4.37)

The covariance matrix for the fitted parameters is

V Λ,Λ′

jv ,j′v
= [α−1]Λ,Λ

′

jv ,j′v
. (4.38)

After fitting the harmonics Cn to our experimental yields, we extract the experimental
cross section for each bin je (and associated error bars) through the expression [77]

d4σExp(je) = d4σFit(je)
NExp(je)

NMC(je)
. (4.39)

4.8.1 Cross sections

The fit parameters are calculated for each kinematics computing all data available from
each run. The fit parameters and their errors are shown along with the photon lepto-
production cross sections. The cross sections are shown as a function of the angle ϕγ for
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every bin in t. The contribution to the cross section from every fit parameter along with
its kinematic factor is also provided as well as the total contribution from the BH process.
Also, the comparison of the counts of DVCS events from experiment (black dots) and
Monte Carlo simulation (red dots) is given next to its corresponding cross section. Table
4.2 contains the values of t comprised in each bin.

tmin tmax tmean
0 -0.22 -0.19

-0.22 -0.28 -0.25
-0.28 -0.34 -0.31
-0.34 -0.41 -0.37
-0.41 -0.50 -0.44

Table 4.2: Values of t for each bin (GeV 2).
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The results shown in this thesis enclose preliminary cross sections for the different
kinematics. We observe a high χ2 in some of the cases, for which we have not found an
explanation so far. We believe that reducing reducing the number of t-bins to four might
increase the accuracy of the fits, decreasing the impact of the acceptance in the borders
of the calorimeter (bin with higher −t). We also observe a deviation of the photon lep-
toproduction cross section from the pure BH contribution, which for any t always shows
around 180◦. We observe this behavior in the results obtained in experiment E00-110
(see Figure 1.15) as well. Although these results do not correspond to any of the studied
kinematics in this thesis (Eb = 5.75GeV , Q2 = 2.3 GeV 2 and t = 0.28 GeV 2), we observe
some similarity between the contributions of the BH and CIunp(F) terms of the second
and third bin of kin3-high (Eb = 5.552GeV , Q2 = 2 GeV 2 and t = 0.25,−0.31 GeV 2),
and the contributions found for E00-110. We also find that for the settings with higher
beam energies, the deviation for the photon leptoproduction cross section from the pure
BH contribution becomes larger. This deviation appears for angles close to the beam
direction (0◦ − 360◦) as −t increases.

Beyond the computation of the cross sections, the goal of experiment E07-007 is to
separate the different contributing amplitudes (eg. BH*DVCS interference from the pure
DVCS2 term) at all three Q2 values of the previous experiments through a Rosenbluth
separation. The results of the experiment will serve to test if factorization in this channel
can be obtained at these energies. However, this task has not been addressed during this
thesis, due to lack of time. Nevertheless, I will go through the details of the procedure of
the Rosenbluth separation in the following lines.

4.9 Rosenbluth separation

For the case of the Rosenbluth separation we perform a decomposition of the cross section,
similar to the one we performed in chapter 4. Again we include the contribution from the
BH process, but this time the kinematic factors will be different since the decomposition
will be done in terms of the φ dependence. We will extract three different contributions:
a term with a cos(φ) dependence, another term with a cos(2φ) dependence, and the con-
tribution we are interested in, a φ independent term. The purpose of this decomposition
is to obtain the φ independent term, related to the DVCS2 amplitude, which encloses the
contribution from the CFF CDV CS(F ,F∗).

d4σ

dxd|∆2|dφdQ2
= ΓG|TBH |2 + Γ1

φX
1
jv + Γ2

φX
2
jv + Γ3

φX
3
jv .
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We can express the cross section in a compact way as

d4σ(xv) =
3∑

Λ=0

ΓΛ
φ(xv)X

Λ
jv ,

with


Γ0
φ(xv)X

0
jv = ΓG(xv)|TBH |2jv

Γ1
φ(xv)X

1
jv → φ independent term

Γ2
φ(xv)X

2
jv = Γ2

φ(xv)CIunp(F)jv cos(φ)
Γ3
φ(xv)X

3
jv = Γ3

φ(xv)CIunp(F eff )jv cos(2φ)


In this case, the X1

jv term is a combination of the observables CIunp(F), ∆CIunp(F) and
CDV CS(F ,F∗). All these CCFs are accompanied by a φ independent kinematic factor
Γ1
φ(xv) (although this term encloses a φ dependence in ΓI , (4.20)). Once this term is iso-

lated from the rest, we will use the observables from each pair of kinematics (kinematics
high-low, obtained using different beam energies) in order to disentangle the contribu-
tion of CDV CS(F ,F∗) from the φ independent term. On the other hand, X2

jv and X3
jv

correspond to the CFFs CIunp(F) and CIunp(F eff ) respectively, and are multiplied by a
cos(φ) and cos(2φ) factor, again, respectively. The kinematic factors employed in the
cross section decomposition read

Γ1
φ = ΓG ·

{
ΓI
[
−8(2− y)

[
(2− y)2

1− y
K2 +

∆2

Q2
(1− y)(2− xB)

]]
+ ΓDV CS

[
2(2− 2y − y2)

]}
,

Γ2
φ = ΓG · ΓI

{
−8K(2− 2y − y2)

}
,

Γ3
φ = ΓG · ΓI

{
−16K2

2− xB
(2− y)

}
,

where ΓDV CS is the factor multiplying the Fourier decomposition of the DVCS amplitude,

ΓDV CS =
1

y2Q2

The process for obtaining the observables X1
jv , X2

jv and X3
jv follows the same path

as in chapter 4, but using the different kinematic factors showed above. Once we have
obtained the values of these observables for each bin in t we will proceed to perform the
Rosenbluth separation. The Γ1

φ(xv)X
1
jv term gives us the φ independent contribution to

the cross section, which encloses the CDV CS(F ,F∗) CFF. In order to disentangle this CFF
from the φ independent term, we decompose X1

jv into the new observables X1,a
jv

and X1,b
jv

.

Here X1,a
jv

corresponds to CDV CS(F ,F∗) and X1,b
jv

corresponds to a combination of the
interference CFFs, CIunp(F) and ∆CIunp(F). To perform the separation we will employ the
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φ independent terms from each pair of kinematics (high-low). Since the dependence with
the beam energy is enclosed in the kinematic factors, we assume that CDV CS(F ,F∗) will
have the same value for each pair of kinematics. With this idea in mind, we will try to fit
the φ independent contribution to the cross section for the two different beam energies,
Γ1
φ,Eb

X1
jv ,Eb

, to a combination of the contributions from the DVCS2 and the interference

amplitudes, Γ1,a
φ,Eb

X1,a
jv

+ Γ1,b
φ,Eb

X1,b
jv

. The φ dependence of the kinematic factors adds some
complexity to the computation of the DVCS2 CFF. We define a χ2, for each bin in t, that
we will later minimize in order to extract X1,a

jv
and X1,b

jv
,

χ2 =
∑
φ,Eb

[
Γ1
φ,Eb

X1
jv ,Eb
− Γ1,a

φ,Eb
X1,a
jv
− Γ1,b

φ,Eb
X1,b
jv

]2

[
σ
X1

jv,Eb

]2 .

Here σ
X1

jv,Eb is the error associated to each of the two X1
jv ,Eb

(one for each of the two

kinematics). Note that X1,a
jv

and X1,b
jv

do not have a dependence on the beam energy
since they will be equal for both kinematics. The idea is to compute these observables by
fitting them to the extracted φ independent terms from the cross sections. The kinematic
factors multiplying these two observables come from the factorization of Γ1

φ,Eb
into the

DVCS2 and interference contributions. The minimization of the χ2 in terms of these two
observables renders the following set of equations

0 =
∂χ2

∂X1,a jv
=
∑
φ,Eb

[
Γ1
φ,Eb

X1
jv ,Eb
− Γ1,a

φ,Eb
X1,a
jv
− Γ1,b

φ,Eb
X1,b
je

]
Γ1,a
φ,Eb

0 =
∂χ2

∂X1,b jv
=
∑
φ,Eb

[
Γ1
φ,Eb

X1
jv ,Eb
− Γ1,a

φ,Eb
X1,a
jv
− Γ1,b

φ,Eb
X1,b
je

]
Γ1,b
φ,Eb

Which can be written in the matricial form


∑
φ,Eb

Γ1
φ,Eb

Γ1,a
φ,Eb

X1
jv ,Eb∑

φ,Eb

Γ1
φ,Eb

Γ1,b
φ,Eb

X1
jv ,Eb

 =


∑
φ,Eb

Γ1,a
φ,Eb

Γ1,a
φ,Eb

∑
φ,Eb

Γ1,a
φ,Eb

Γ1,b
φ,Eb∑

φ,Eb

Γ1,a
φ,Eb

Γ1,b
φ,Eb

∑
φ,Eb

Γ1,b
φ,Eb

Γ1,b
φ,Eb




X1,a
jv

X1,b
jv


By inverting the 2x2 matrix and multiplying the result by the matrix on the left we

would obtain the DVCS2 CFF, CDV CS(F ,F∗), and the contribution from the interference
amplitude. Since X2

jv is also computed through this process, the contribution from the
interference amplitude could be decomposed as well into the CFFs CIunp(F) and ∆CIunp(F).
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Figure 4.20: Left figures: Preliminary cross sections for Kinematics 1-low.
Right figures: Comparison between the counts of DVCS events from experiment (black
dots) and from the Monte Carlo simulation (red dots). No systematic errors considered.
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Figure 4.21: Left figures: Preliminary cross sections for Kinematics 1-high.
Right figures: Comparison between the counts of DVCS events from experiment (black
dots) and from the Monte Carlo simulation (red dots). No systematic errors considered.
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Figure 4.22: Left figures: Preliminary cross sections for Kinematics 2-low.
Right figures: Comparison between the counts of DVCS events from experiment (black
dots) and from the Monte Carlo simulation (red dots). No systematic errors considered.
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Figure 4.23: Left figures: Preliminary cross sections for Kinematics 2-high.
Right figures: Comparison between the counts of DVCS events from experiment (black
dots) and from the Monte Carlo simulation (red dots). No systematic errors considered.
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Figure 4.24: Left figures: Preliminary cross sections for Kinematics 3-low.
Right figures: Comparison between the counts of DVCS events from experiment (black
dots) and from the Monte Carlo simulation (red dots). No systematic errors considered.
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Figure 4.25: Left figures: Preliminary cross sections for Kinematics 3-high.
Right figures: Comparison between the counts of DVCS events from experiment (black
dots) and from the Monte Carlo simulation (red dots). No systematic errors considered.



Conclusions

This thesis focuses on the dedicated EM calorimeter that was used to detect the photon
in experiment E07-007 at Jefferson Lab. Although I started my Ph.D. after the data
acquisition, I had the chance to visit Jefferson Lab while the experiment was running and
observe the calorimeter performance. Experiment E07-007 is enclosed in the second gen-
eration of DVCS experiments in Jefferson Lab. This experiment, along with experiment
E08-025 [78] builds on the success of the first round of data taking [77], [79]. There is a
third generation of DVCS experiments coming up that will take place once the upgrade
of the CEBAF facility is operational. The first upcoming DVCS experiment [80] will seek
to obtain DVCS cross sections at a wider Q2 coverage, using the increased beam energy
(up to 12 GeV). This will determine with what precision the handbag amplitude domi-
nates (or not) over the higher-twist amplitudes. The amount of DVCS experiments being
carried out shows the importance and the value of the information we expect to find from
the nucleon structure, and the quark position and momentum within the nucleon.

Regarding the theoretical frame of the photon leptoproduction reaction, I went through
the whole computation of the CFFs and the factorization in Fourier harmonics of the cross
section, as explained in section 1.4. This was a way of getting a direct idea about the core
goal of DVCS experiments, and about our level of understanding of the proton structure
at this moment.

The first task I took on when starting this thesis, was the calibration of the calorimeter.
It was designed for DVCS experimentation purposes, and it is an upgraded version of the
very same device used in previous DVCS experiments. The upgrade was performed with
the aim of employing the detector in the experiment E07-007. In order to perform the
calibration, I analyzed the stored data from calibration sessions, applied several fiducial
cuts that I had to adjust in order to improve the efficiency of the device, and dealt with
the issues of block malfunctioning stated in section 3.3.3. The fact that several calibration
sessions, using elastic processes, took place during the experiment makes the calibration
reliable for any given run. The stability of the coefficients as well as the test using π0
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decays confirm this statement. Also, through the elastic calibration data, we computed
the values of the energy and angular resolution of the calorimeter, which are satisfactory.
A priori, the vertical and horizontal resolutions should be similar. However, we find that
the vertical resolution is a bit worse than the horizontal one. One reason for this might
be that the vertical resolution of the HRS is worse that the horizontal one (6 mrad in x
and 2 mrad in y).

After performing the calibration, we were in a position to analyse the data stored for
each block of the calorimeter. The first step was to discard runs with known problems
that rendered them unfit for the analysis. The sampling of the PMTs current as a re-
sponse of the arriving particles is something peculiar in the data acquisition system. One
could have decided to set an energy threshold in order to select the events as a function
of the maximum of the signal. However, due to the high luminosity of the beam in Hall
A it is important to be able to analyse events which would have been discarded due to
pile-up if we had decided to store data in this way. In the case of the kinematics Kin
3-high, we found around 8% of blocks with two pulses. At this stage I implemented the
2-pulse analysis algorithm, and optimized the different parameters showed on Table 3.2,
including the study of the different analysing thresholds, in order to increase the precision
and speed of the signal analysing process. I also applied the time correction for each block
on each run of the stored data, by studying the time of arrival of the stored signals, as
explained in section 3.1.5.

The clustering algorithm proves to be a powerful tool for computing impact points
in the surface of the calorimeter as well as for discerning multiple impacts from different
particles. My work involving the clustering algorithm includes its modification in order to
store data from two-cluster events as well as the study of the clustering threshold. This
threshold helps us discriminate the events using the number of formed clusters, although
a multicluster correction is necessary. Besides providing a way to obtain the kinematic
variables of the hitting particles, essential for the cross section computation, it allowed
us to perform the subtraction of the π0 background without having to compute the cross
section for this kind of contamination.

The next step in calculating the photon leptoproduction cross sections was to subtract
the background from the data. Here I performed the π0 and the accidental subtraction.
For the π0 subtraction, I had to implement an algorithm that simulated the surface of
the electromagnetic calorimeter. Then, I had to perform the randomization of the π0

decays, taking into account the kinematics and geometry of each decay, such as perform-
ing a correction for the vertex impact point and including in the computation the fact
that most of the particles energy is deposited at a 7cm depth inside the calorimeter, in
the direction of the particle’s line of flight. For the case of the accidentals subtraction, I
extracted the sample of accidental detections for each run and then, extracted each acci-
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dental event from the corresponding experimental bin of DVCS events, according to its
kinematics. As stated before, a multicluster correction was needed to take into account the
DVCS detections found in two-cluster events. The correction included the analysis of all
two-cluster events, following the same steps employed in the analysis of one-cluster events.

The computation of the cross sections were obtained using a Monte Carlo simulation
of the experiment. The simulation was employed to fit the data and obtain the different
contributions to the cross section. I computed the cross sections by following the steps
shown in section 4.8. All fiducial cuts were applied to the simulation data before perform-
ing the extraction of observables. Then I introduced the coefficients shown in Appendix
C into the computation, and performed the binning of the cross section in the t and ϕγ
variables. After going through all these tasks I finally obtained the preliminary photon
leptoproduction cross section for every kinematic employed in the experiment, along with
the contributions from BH, CIunp(F), ∆CIunp(F), and CIunp(F eff ), as shown in Figures 4.20-
4.25.

During the last weeks of my thesis I started to perform the Rosenbluth Separation in
order to obtain the contribution of the CDV CSunp (F ,F∗) term. However, the computation
of this term is not fully implemented and it remains as work to do. Also, the different
contributions from systematic errors have yet to be included in the computation of the
errors of the cross sections. A further study of the systematic error created by the cut in
the “Missing mass” has to be performed. This will include the study of the error in the
different kinematics (besides kin3-high), and applying a different cut in different areas of
the calorimeter, depending on the resolution in those areas. Finally, we expect to obtain
the polarized cross sections, employing the available data on the beam polarization.





Appendix A
Light cone coordinates

To derive the relevant distances in deeply inelastic scattering, it proves useful to switch to a
reference frame where the target proton is at rest and the virtual photons three-momentum
points in the direction opposite to the z-axis. Then the virtual photon 4-vector reads [16]:

qµ =

(
Q2

2MxB
, 0, 0,− Q2

2MxB

√
1 + 4M2x2

B/Q2

)
. (A.1)

We can express q in light-cone coordinates as:

qµ = q+p̃µ + q−nµ + ~qµ⊥, q+ = q0 + q3, q− = q0 − q3, (A.2)

Figure A.1: Light cone: space-time trajectory of the struck quark in the hadron.

and p̃ and n as the Sudakov vectors defined by:
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p̃ =
1√
2


1
0
0
1

 , n =
1√
2


1
0
0
−1

 . (A.3)

When Q2 is large, the light-cone components of the momentum transfer can be approxi-
mated by:

q− ∼ Q2/(MxB), q+ ∼MxB. (A.4)

The integrand in (1.13) is an oscillatory function and thus gives vanishing result unless
the distances involved are

z− ∼ 1/(MxB), z+ ∼MxB/Q2. (A.5)

Causality ensures z2 > 0, and so z⊥ < 2z+z− ∼ 1/Q2. Therefore, the only region which
contributes to the integral is close to the light-cone z2 ≈ 0. The light-cone distance
dominance in scattering amplitudes legitimates the application of powerful methods of
perturbative QCD.



Appendix B
DVCS kinematics

In the target rest frame in which the z-axis is directed opposite to the momentum of
the space-like virtual photon (see figure 1.13), we have for the initial proton and virtual
photon four-momenta [16],

pµ = (MN , 0, 0, 0) , qµ = (w, 0, 0,−qz) , (B.1)

where the photon energy and the z-component of its three-momentum are expressed as:

w =
Q
ε
, qz =

Q
ε

√
1 + ε2. (B.2)

The outgoing nucleon four-momentum in the target rest frame has the components:

p′µ = (E ′,p′) , E ′ = MN −
∆2

2MN

, |p′| =
√
−∆2(1−∆2/ (4M2

N)). (B.3)

and the scattering angle of the recoiled nucleon is:

cos(θN) = −ε
2 (Q2 −∆2)− 2xB∆2

4xBMN |p′|
√

1 + ε2
. (B.4)

The incoming electron four-momentum,

kµ = (E, kx, 0, kz) = E (1, sin(θe), 0, cos(θe)) , E =
Q
yε
, cos(θe) = −1 + yε2/2√

1 + ε2
,

(B.5)
depends on the variable proportional to the lepton energy loss,

y =
p · q
p · k

, q = k − k′. (B.6)

Notice that from the relation
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sin(θe) =
ε
√

1− y − y2ε2/4√
1 + ε2

, (B.7)

it is clear that for large momentum transfer from the lepton to the target, the lepton
beam experiences forward scattering with almost no deflection as θe → 0 for Q2 � MN .
Finally, the four-vector of the real photon is given by:

q′µ = (w′,vw′) , (B.8)

with momentum components and the scattering angle being:

w′ =
Q
ε

+
∆2

2MN

, |v| = 1, cos(θγ) = −ε
2 (Q2 −∆2) + 2Qw′

2Qw′
√

1 + ε2
. (B.9)

There is an important difference between the interference term and the squared DVCS
amplitude. The former has a contaminating φ-dependence due to the lepton BH propa-
gators,

Q2P1 = (k − q2)2 = Q2 + 2k ·∆,
Q2P2 = (k −∆)2 = ∆2 − 2k ·∆.

(B.10)

where

k ·∆ = − Q2

2y(1 + ε2)

{
1 + 2K cos(φ)− ∆2

Q2

(
1− xB(2− y) +

yε2

2

)
+
yε2

2

}
. (B.11)

The 1/Q-power suppressed kinematical factor K appearing here also shows up in the
Fourier series,

K ≡ 1

2Q2

√
−(1− y − y2ε2/4)(4xB(1− xB) + ε2)(∆2 −∆2

min)(∆2 −∆2
max). (B.12)

We expressed K in terms of the maximal and minimal momentum transfer in the t-channel,

∆2
min,max =

1

4xB(1− xB)ε2

{
2(1− xB)Q2 + ε2Q2 ∓ 2

√
1 + ε2(1− xB)Q2

}
, (B.13)

with - (+) corresponding to ∆2
min (∆2

max). It vanishes at the kinematical boundary ∆2 =
∆2
min, determined by the minimal value

−∆2
min ≈

M2
Nx

2
B

1− xB + xBM2
N/Q2

. (B.14)



Appendix C
Coefficients and Compton form factors

We list the coefficient of the Fourier decomposition of the photon leptoproduction cross
section as well as the Compton Form Factors they refer to [16]. We only include the
coefficients for the unpolarized target.

C.1 Bethe-Heitler coefficients

cBH0,unp = 8K2

{
(2 + 3ε2)

Q2

∆2

(
F 2

1 −
∆2

4M2
F 2

2

)
+ 2x2

B(F1 + F2)2

}
+ (2− y)2

{
(2 + ε2)

[
4x2

BM
2

∆2

(
1 +

∆2

Q2

)2

+ 4(1− xB)

(
1 + xB

∆2

Q2

)](
F 2

1 −
∆2

4M2
F 2

2

)

+4x2
B

[
xB +

(
1− xB +

ε2

2

)(
1− ∆2

Q2

)2

− xB(1− 2xB)
∆4

Q4

]
(F1 + F2)2

}

+ 8(1 + ε2)

(
1− y − ε2y2

4

){
2ε2
(

1− ∆2

4M2

)(
F 2

1 −
∆2

4M2
F 2

2

)
− x2

B

(
1− ∆2

Q2

)2

(F1 + F2)2

}
(C.1)

cBH1,unp = 8K(2−y)

{(
4x2

BM
2

∆2
− 2xB − ε2

)(
F 2

1 −
∆2

4M2
F 2

2

)
+ 2x2

B

(
1− (1− 2xB)

∆2

Q2

)
(F1 + F2)2

}
(C.2)

cBH2,unp = 8x2
BK

2

{
4M2

∆2

(
F 2

1 −
∆2

4M2
F 2

2

)
+ 2(F1 + F2)2

}
(C.3)
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C.2 DVCS coefficients

cDV CS0,unp = 2(2− 2y − y2)CDV CSunp (F ,F∗) (C.4)

{
cDV CS1,unp

sDV CS1,unp

}
=

8K

2− xB

{
2− y
−λy

}{
<e
=m

}
CDV CSunp (F eff ,F∗) (C.5)

cDV CS2,unp = − 4Q2K2

M2(2− xB)
<eCDV CST,unp (FT ,F∗) (C.6)

C.3 Interference coefficients

cI0,unp = −8(2− y)<e
{

(2− y)2

1− y
K2CIunp(F) +

∆2

Q2
(1− y)(2− xB)

(
CIunp + ∆CIunp

)
(F)

}
(C.7)

{
cI1,unp
sI1,unp

}
= 8K

{
−(2− 2y − y2)
λy(2− y)

}{
<e
=m

}
CIunp(F) (C.8)

{
cI2,unp
sI2,unp

}
=

16K2

2− xB

{
−(2− y)
λy

}{
<e
=m

}
CIunp(F eff ) (C.9)

cI3,unp = − 8Q2K3

M2(2− xB)2
<eCIT,unp(FT ) (C.10)

C.4 Compton form factors

CDV CSunp (F ,F∗) =
1

(2− xB)2

{
4(1− xB)

(
HH∗ + H̃H̃∗

)
− x2

B

(
HE∗ + EH∗ + H̃Ẽ∗ + ẼH̃∗

)
−
(
x2
B + (2− xB)2 ∆2

4M2

)
EE∗ − x2

B

∆2

4M2
Ẽ Ẽ∗

}
(C.11)

CIunp(F) = F1H +
xB

2− xB
(F1 + F2)H̃ − ∆2

4M2
F2E (C.12)
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∆CIunp(F) = − xB
2− xB

(F1 + F2)

{
xB

2− xB
(H + E) + H̃

}
(C.13)

CDV CST,unp (FT ) =
1

(2− xB)2

{
HT

[
(2− xB)E∗ − xBẼ∗

]
− 2(2− xB)H̃T

[
H∗ +

∆2

4M2
E∗
]}

+
1

(2− xB)2

{
−ET

[
(2− xB)H∗ − xBH̃∗

]
+ ẼT

[
xB(H∗ + E∗)− (2− xB)H̃∗

]}
(C.14)

CIT,unp(FT ) = −F2HT + 2

(
F1 −

∆2

4M2
F2

)
H̃T + F1ET (C.15)

where (FT ) indicates gluon transversity is involved and F eff is defined by,

F eff = − 2ξ

1 + ξ
F + 2ξ

(
F+

3 −F−3
)

(C.16)
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[68] Carlos Muñoz Camacho, PhD thesis. Université Paris VI (2005).

[69] Maxime Defurne, Deeply Virtual Compton Scattering cross sections from the E00-110
experiment, Internal note (2013). https://hallaweb.jlab.org/dvcslog/DVCS2/242.

[70] J. Roche et al., Phys. Rev. Lett. 85, 708 (2000).

[71] M. Vanderhaeghen, J.M. Friedrich, D. Lhuillier, D. Marchand, L. Van Hoorebeke and
J. Van de Wiele, QED radiative corrections to virtual Compton scattering, Phys.Rev.
C62, 025501 (2000).

[72] Y. S. Tsai, Rev. Mod. Phys. 815, 46 (1974).

[73] X. Jiang, PhD thesis, University of Massachusetts Amherst.

[74] Charles E. Hyde-Wright, Comment on Radiative Corrections in Virtual Compton
Scattering. Internal note (2006). https://hallaweb.jlab.org/dvcslog/DVCS2/235.

[75] L.W. Mo, Y. S. Tsai, Rev. Mod. Phys. 41, 205 (1969).

[76] S. Agostinelli et al. GEANT 4-A simulation toolkit.
Nuclear Instruments and Methods in Physics Research A 506 (2003) 250-303.
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Resumen en español

El estudio de la estructura interna de los hadrones nos permite comprender la naturaleza
de las interacciones entre los partones, quarks y gluones, descritas por la Cromodinámica
Cuántica. En este marco se incluyen los procesos de difusión elástica, que han sido uti-
lizados satisfactoriamente para medir los factores de forma de los nucleones. En este
marco también se incluyen los procesos inelásticos, de los cuales es posible extraer una
gran cantidad de información, gracias al desarrollo teórico de las Distribuciones de Par-
tones (PDFs). Por tanto, mientras que la dispersión elástica de electrones por el nucleón
nos proporciona información sobre la distribución de carga del mismo y, por ende, de la
distribución espacial de sus componentes, la dispersión inelástica nos proporciona infor-
mación sobre la distribución de momentos a través de las PDFs. No obstante, dentro
de los procesos inelásticos, es posible estudiar procesos exclusivos tales como el Deeply
Virtual Compton Scatering (DVCS), que nos permite el acceso a la distribución espacial
y a la distribución de momentos de los quarks simultáneamente. Esto es posible a través
de las denominadas Funciones Generalizadas de Partones (GPDs), que permiten correla-
cionar ambos tipos de distribuciones. El proceso conocido como DVCS es la forma más
sencilla de acceder a las GPDs. Este proceso consiste en la dispersión de un electrón por
un protón, mediante el intercambio de un fotón virtual, con el resultado de la dispersión
de las part́ıculas iniciales y la emisión de un fotón real.

p+ e→ p′ + e′ + γ

Este proceso compite con el denominado Bethe-Heitler, en el que el fotón real es emitido
por el electrón inicial o final. Debido a la pequeña sección eficaz de este tipo de procesos,
del orden del nb, es necesario hacer uso de unas instalaciones capaces de proporcionar
una alta luminosidad para llevar a cabo los experimentos. Una de estas instalaciones es el
Thomas Jefferson National Accelerator Facility, donde se condujo el experimento denom-
inado “Complete Separation of Virtual Photon and π0 Electroproduction Observables of
Unpolarized Protons”, durante el periodo entre octubre y diciembre de 2010. El principal
objetivo de este experimento es la separación de la contribución proveniente del DVCS a
partir del término de interferencia, resultante de la contribución del BH. Esta separación
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recibe el nombre de “Separación Rosenbluth”.

El Jefferson Laboratory se encuentra situado en la ciudad de Newport News, Virginia
(U.S.A.). Su principal instalación es el acelerador CEBAF (Continous Electron Beam Ac-
celerator Facility). Está diseñado para que los electrones alcancen hasta 6 GeV, trazando
hasta 5 órbitas a lo largo de sus dos Linacs superconductores, de unos 300m de longi-
tud, conectados por secciones curvas en los extremos. Está equipado con un inyector
capaz de proporcionar electrones polarizados. El haz es canalizado hasta 3 instalaciones
distintas conocidas como Halls A,B y C. Cada una de estas instalaciones puede recibir
simultáneamente un haz con enerǵıa máxima, y dispone del equipo de detección necesario
para almacenar los resultados de la colisión del haz con diferentes blancos estacionarios.
La construcción de un nuevo Hall (D) se está llevando a cabo en el extremo opuesto al
emplazamiento del resto de los Halls. Actualmente, se está trabajando en las mejoras
para incrementar la enerǵıa del haz hasta los 12 GeV y se espera que el acelerador esté
operativo a 12 GeV a lo largo del 2014.

El Hall A, donde se llevó a cabo la experiencia, está destinado a experimentos de alta
precisión con una alta luminosidad. Entre su equipamiento destacan dos espectrómetros
de alta resolución. A lo largo de la trayectoŕıa del haz hay dispuestos varios sistemas de
medida con el objetivo de recoger información sobre el mismo. Los polaŕımetros, Comp-
ton y Møller, determinan la polarización del haz. El primero permite la medición sin
necesidad de detener el proceso experimental mientras que las mediciones del segundo
son intrusivas. También se dispone de sistemas de monitorización de la enerǵıa y corri-
ente de haz. Es posible conocer la posición del centro del haz con una indeterminación
de 100µm para corrientes de 1µA.

El montaje experimental fue el siguiente: el haz de electrones impacta en un blanco
de LH2 con el resultado de la dispersión de un protón, un electrón (detectado por uno
de los espectrómetros) y la emisión de un fotón (detectado por un caloŕımetro electro-
magnético diseñado para la experiencia). Esta tesis se centra en el análisis de los datos
recogidos por el caloŕımetro, para la obtención de la sección eficaz de la reacción descrita,
y la realización de la Separación Rosenbluth de la contribución del DVCS al término de
interferencia. El caloŕımetro está conformado por 208 bloques de PbF2, cada uno con
dimensiones 3× 3× 18.6 cm3. Debido a sus caracteŕısticas, más del 99.9% de la enerǵıa
incidente es absorbida por el cristal. Los fotones Čerenkov emitidos por las part́ıculas
cargadas que conforman las cascadas electromagnéticas son recolectados por fotomultipli-
cadores.

En primer lugar se abordó la calibración del caloŕımetro. El calibrado consiste en la
obtención de los coeficientes que nos permitan obtener la enerǵıa depositada en función
de la amplitud del pulso electrónico de cada bloque. Para ello, se estudió la respuesta del
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caloŕımetro a los impactos de electrones provenientes de la reacción elástica p+e→ p′+e′.
En este caso, el protón dispersado era detectado por el espectrómetro. Dado que se trata
de una reacción elástica, es posible conocer las variables cinemáticas del electrón disper-
sado en función de las variables correspondientes al haz de electrones, el blanco y el protón
dispersado. Conociendo la enerǵıa de los electrones que son detectados por el caloŕımetro,
es posible convertir la amplitud de las señales generadas por estos en unidades de enerǵıa.
Al mismo tiempo estudiamos la resolución energética y angular del aparato. Todo ello
teniendo en cuenta que t́ıpicamente la cascada electromagnética se produce en nueve blo-
ques, el impactado y sus adyacentes. Es por eso que cuando tenemos un impacto en
uno de los bordes del caloŕımetro no registamos parte de la enerǵıa de la part́ıcula. Esto
influye en gran modo en la calibración del detector: los coeficientes de calibración de los
bloques situados en los extremos no son tan fiables como el resto. La calibración puede
variar con el paso del tiempo, es por ello que se llevaron a cabo varias sesiones durante las
fechas en las que duró el experimento. La estabilidad obtenida para los coeficientes a lo
largo de las diferentes calibraciones nos indica la fiabilidad de los mismos. Los resultados
obtenidos para las resoluciones energética (∼ 3%) y angular son también satisfactorios.

Tras la calibración del detector comenzó el análisis de las señales procedentes del ex-
perimento en śı. Debido a la alta luminosidad del haz de electrones es necesario lidiar
con mucho ruido de fondo y eventos con “pile-up”. Cuando hay una detección, las señales
generadas por cada bloque son almacenadas durante 128 ns. Al observar las señales apre-
ciamos la variación en la corriente generada por los fotomultiplicadores como respuesta
a la enerǵıa depositada por las particulas: un pulso cuando hay un solo impacto, dos
pulsos (pile-up) o ruido de fondo. Por lo tanto, fue necesario implementar un algoritmo
que extrajera la amplitud y el tiempo de llegada de los pulsos de forma acorde al tipo
de evento registrado. Al mismo tiempo, se introdujeron las correcciones al tiempo de
llegada debidas a las diferencias en la longitud de los cables y la posición de los bloques
que conforman el caloŕımetro.

A la hora de reconstruir la enerǵıa del electrón dispersado no tiene sentido utilizar las
señales de todos los bloques del caloŕımetro, pues es obvio que e′ no deposita enerǵıa en
todos ellos. Si lo hicieramos estaŕıamos añadiendo mucha contribución proveniente del
ruido electrónico. Es pues muy conveniente, determinar cuáles son los bloques en los que
e′ ha depositado enerǵıa. Un modo de determinar qué bloques han recogido enerǵıa del
e′ es imponer un valor umbral en la amplitud de la señal. No obstante, un valor umbral
para la amplitud de cada bloque no es el prodecimiento adecuado, pues la mayoŕıa de
la enerǵıa del electrón (alrededor de un 90%) se deposita en un único bloque, mientras
que el resto se distribuye por los bloques colindantes. La forma en que abordamos la
reconstrucción de la enerǵıa es imponiendo un valor umbral a la suma de las amplitudes
de cada combinación posible de grupos de 4 bloques adyacentes. Una vez seleccionados
los grupos de cuatro que superan el umbral, un algoritmo conocido como “clustering”,
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creado para formar “clusters” (combinaciones de bloques que determinan la zona de im-
pacto de una part́ıcula), busca el máximo local y forma las zonas de impacto añadiendo
bloques colindantes con una amplitud menor a los bloques ya añadidos. De este modo,
es posible extraer la información necesaria para el cálculo de las variables cinemáticas de
las part́ıculas que impactan en el detector, que empleamos en el cálculo de la sección eficaz.

Durante la adquisición de datos tenemos contribuciones de reacciones que no pertenecen
al DVCS. Estas detecciones alteran nuestros datos y deben ser sustráıdas. La mayoŕıa
de estas detecciones son descartadas aplicando algunos cortes en determinadas variables
cinemáticas, como por ejemplo, en el punto de impacto en el blanco. Debido al encapsu-
lado del blanco no todos los protones dispersados provienen del LH2. Podemos reconstruir
el punto de impacto del electrón incidente con los datos del HRS para comprobar si hubo
colisión con el blanco. En el caso del HRS, se aplica un corte a las variables cinemáticas
del electrón dispersado con el fin de seleccionar eventos dentro de la región de acep-
tancia óptima del espectrómetro. También se aplican cortes a las zonas de impacto del
caloŕımetro, descartando aquellas detecciones en las partes exteriores del aparato. Esto
es debido a la pérdida de enerǵıa en estas zonas.

No toda la extracción de detecciones no deseadas puede ser llevada a cabo empleando
cortes en variables cinemáticas. La sustracción de la contribución proveniente de la elec-
troproducción de π0 debe ser realizada empleando otros métodos. Un método seŕıa el de
evaluar la sección eficaz de esta reacción dentro del ángulo sólido del experimento. Sin
embargo, hemos optado por emplear una simulación en la que generamos desintegraciones
de π0, con la cual el cálculo anterior es innecesario. Este método genera desintegraciones
de π0 en dos fotones, con el fin de evaluar la cantidad de impactos sobre el caloŕımetro
por parte de uno de los fotones que provienen de esta reacción (es en este caso cuando
se contaminan nuestros datos puesto que el DVCS sólo genera un fotón real). Asimismo,
también es necesario evaluar la cantidad de impactos accidentales a la hora de recoger
datos. Para ello se emplea el espectro de detecciones del caloŕımetro cuando el tiempo de
llegada de las part́ıculas no coincide con el del HRS. Puesto que el espectro de detecciones
accidentales es continuo, debe ser equivalente en cualquier momento.

Tras realizar la sustracción del fondo debemos aplicar correcciones debidas a la ra-
diación bremsstrahlung creada por los electrones al atravesar el blanco. Esta corrección
se encuadra dentro de las correcciones radiativas externas, que aplicamos a los datos antes
de calcular la sección eficaz. Las correcciones radiativas internas se dividen en correcciones
virtuales y correcciones reales. Las correcciones virtuales incluyen correcciones de vértice
y de polarización del vaćıo, mientras que las correcciones reales abordan la emisión de
fotones reales por los electrones. Una vez aplicadas las correcciones radiativas comen-
zamos el cálculo de la sección eficaz. Para ello hacemos uso de una simulación Monte
Carlo, con la finalidad de incluir la resolución y geometŕıa de los aparatos empleados en el
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cálculo. En la simulación se introducen los aparatos principales que conforman el experi-
mento: la cámara de dispersión (donde se encuentra el blanco), los tubos conductores del
haz de electrones, el caloŕımetro y el HRS. La simulación requiere incluir los materiales
que conforman los aparatos, con sus respectivas propiedades. También se introducen las
propiedades del medio que rodea los aparatos.

El cómputo de la sección eficaz nos permite obtener las diferentes contribuciones prove-
nientes del BH y de los “Compton Form Factors” (CFFs), CIunp(F), ∆CIunp(F) y CIunp(F eff )
(factores asociados a la descomposición en harmónicos de Fourier de la interferencia gener-
ada por el DVCS y el BH). Durante el experimento se estudiaron tres cinemáticas distintas,
variando la virtualidad del fotón. Para cada una de estas cinemáticas se emplearon dos
haces de enerǵıa diferentes, con el fin de aislar los factores cinemáticos, independientes
de la enerǵıa del haz. Esto abre la posibilidad de realizar la Separación Rosenbluth de
la contribución del DVCS al término de interferencia. Se ha realizado un “binning” en
la variable t (t corresponde a la transferencia de momento que recibe el protón, expre-
sada al cuadrado), lo que nos permite obtener diez diferentes secciones eficaces para cada
cinemática estudiada (cinco por cada bin en t y dos por cada enerǵıa del haz), en función
del ángulo entre los planos hadrónico y leptónico de la reacción, ϕγ. En esta tesis se
presentan los resultados preliminares del análisis de los datos recogidos. En todos los
casos observamos una desviación de la sección eficaz total de la contribución del BH. Para
enerǵıas mayores, la desviación es mayor. También observamos que el comportamiento
de las distintas contribuciones es muy similar al encontrado en experimentos anteriores.

Con los datos de los que disponemos ya es posible realizar la Separación Rosenbluth y
aśı obtener la contribución del CFF CDV CSunp (F ,F∗), empleando los resultados mostrados
en esta tesis. Sin embargo, esta tesis no incluye este cálculo, que queda para un futuro
trabajo. También, quedan por incluir las contribuciones de los errores sistemáticos al
cálculo de los errores en las secciones eficaces. Un estudio sobre el Deep Inelastic Scattering
(DIS), realizado empleando los datos del experimento, indica que las contribuciones de los
errores sistemáticos al DIS se sitúan en torno al 3.5%. Partiendo de este dato se espera
una contribución no superior al 5% para el caso del DVCS. En un futuro, queda como
objetivo el cálculo de las secciones eficaces polarizadas.
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L’étude de la structure interne des hadrons nous permet de comprendre la nature des
interactions entre les partons, les quarks et les gluons, décrites par la Chromodynamique
Quantique. Les processus de diffusion élastique, qui ont été utilisés avec succès pour
mesurer les facteurs de forme des nucléons, sont inclus dans ce cadre. Les processus
inélastiques sont également inclus dans ce cadre, ils nous permettent d’extraire beau-
coup d’information grâce au le développement des distributions de partons (PDFs). Par
conséquent, tandis que la diffusion élastique d’électrons par le nucléon nous fournit des
informations sur la répartition des charges, et donc de la distribution spatiale de les com-
posants du nucléon, la diffusion inélastique présente des informations sur la distribution
d’impulsions au moyen des PDFs. Cependant, dans les processus inélastiques, il est possi-
ble d’étudier les processus exclusifs tels que la Diffusion Compton Profondément Virtuelle
(DVCS), qui nous permet d’accéder aux distributions spatiale et d’impulsions des quarks
simultanément. Ceci est possible grâce aux fonctions généralisées des distributions de
partons (GPDS), qui nous permettent de corréler les deux types de distributions. Le
processus connu sous le nom DVCS est le moyen le plus facile pour accéder aux GPDS.
Ce procédé implique la diffusion d’un électron par un proton, au moyen de l’échange d’un
photon virtuel, qui entrâıne la diffusion des particules initiales et l’émission d’un photon
réel.

p+ e→ p′ + e′ + γ

Ce processus est en concurrence avec le processus dit Bethe-Heitler, dans lequel le photon
réel est émis par l’électron initial ou final. En raison de la faible section efficace de ce
type de procédé, de l’ordre du nb, il est nécessaire d’utiliser une installation capable de
fournir une haute luminosité pour réaliser les expériences. L’une de ces installations est le
Thomas Jefferson National Accelerator Facility, où l’expérience appelée “Complete Sepa-
ration of Virtual Photon and π0 Electroproduction Observables of Unpolarized Protons” a
été réalisée au cours de la période entre Octobre et Décembre de 2010. Le principal objec-
tif de cette expérience est la séparation de la contribution du terme provenant du DVCS
à partir du terme d’interférence, résultant de la contribution du BH. Cette séparation est
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appelée “Séparation Rosenbluth”

Jefferson laboratoire est situé dans la ville de Newport News, Virginia (U.S.A.). Son
installation principale est l’accélérateur CEBAF (Continous Electron Beam Accelerator
Facility). Il est conçu de sorte que les électrons atteignent jusqu’à 6 GeV, en parcourant
jusqu’à cinq orbites au long de deux accélérateurs linéaires superconducteurs, de envi-
ron 300m de long, reliées par des sections courbes aux extrémités. Il est équipé d’un
injecteur capable de fournir des électrons polarisés. Le faisceau est acheminé jusqu’à 3
établissements différents connus comme halls A, B et C. Chacune de ces installations
peut recevoir simultanément un faisceau d’énergie maximale, et elles ont l’équipement
nécessaire pour la détection et l’enregistrement des résultats de la collision du faisceau avec
des différentes cibles fixes. Un noveau hall (D) est en train d’être construit à l’extrémité
opposée du site. Actuellement, le laboratoire travaille sur des améliorations pour aug-
menter l’énergie de faisceau jusqu’à 12 GeV.

Le Hall A, où l’expérience a eu lieu, est destiné à des expériences de haute précision à
haute luminosité. Il est équipé avec deux spectromètres de haute résolution. Sur le long de
la trajectoire du faisceau, plusieurs systèmes de mesure sont disposés afin de recueillir des
informations sur les electrons. Les polarimètres, Compton et Møller, déterminent la polar-
isation du faisceau. Le premier permet de mesurer sans arrêter le processus expérimental
tandis que les mesures du second dispositif sont intrusives. Des systèmes de mesure de
l’énergie et le courant du faisceau sont aussi disponibles. Il est possible de connâıtre la
position du centre du faisceau avec une uncertitude de 100µm pour des courants de 1µA.

Le dispositif expérimental était le suivant: le faisceau d’électrons frappe une cible de
LH2, résultant en la diffusion d’un proton, un électron (détecté par l’un des spectromètres)
et l’émission d’un photon (détecté par un calorimètre électromagnétique conçu pour
l’expérience). Cette thèse se centre sur l’analyse des données recueillies par le calorimètre,
pour obtenir la section efficace de la réaction décrite et pour réaliser la Séparation Rosen-
bluth de la contribution du terme DVCS au terme d’interférence. Il est composé de 208
blocs de PbF2, chacun mesurant 3 × 3 × 18.6 cm3. Grâce à ses caractéristiques, plus de
99,9% de l’énergie incidente est absorbée par le verre. Les photons Čerenkov émis par les
particules chargées qui composent les cascades électromagntiques sont recueillies par des
photomultiplicateurs. Autour de 1000 photons Čerenkov sont émis par GeV (estimation
par simulation Monte Carlo).

Tout d’abord la calibration du calorimètre a été adressée. La calibration consiste
à obtenir des coefficients qui nous permettent d’obtenir l’énergie déposée en fonction
de l’amplitude de l’impulsion électronique de chaque bloc. A cet effet, la réponse du
calorimètre à l’impact d’électrons provenants de la réction élastique p+ e→ p′ + e′ a été
étudiée. Dans ce cas, le proton dispersé a été détecté par le spectromètre. Comme il s’agit
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d’une réaction élastique, il est possible de connâıtre les variables cinématiques de l’électron
diffusé en fonction des variables correspondants au faisceau d’électrons, la cible et le pro-
ton diffusé. Connaissant l’énergie des électrons qui sont détectés par le calorimètre, il est
possible de convertir l’amplitude des signaux générés en unités d’énergie. Au même temps
nous étudions la résolution énergétique et angulaire de l’appareil. Tout cela en gardant à
l’esprit que généralement la cascade électromagnétique se produit en neuf blocs, l’impacté
et ses adjacentes. C’est pourquoi, lorsque nous avons un impact sur l’un des bords du
calorimètre, une partie de l’énergie de la particule n’est pas détecté. Cela influe fortement
sur la calibration du détecteur: les coefficients des blocs aux extrémités ne seront pas
aussi fiables que les autres. La calibration peut varier au fil du temps, c’est pourquoi nous
avons fait plusieurs séances durant l’expérience. La stabilité obtenue pour les coefficients
pendant les différentes séances indique la fiabilité de ceux-ci. Les résultats obtenus pour
les résolutions angulaires et énergétique sont également satisfaisants.

Après la calibration du détecteur j’ai commencé l’analyse des signaux de l’expérience.
En raison de la forte luminosité du faisceau d’électrons, il est nécessaire de traiter beau-
coup de bruit de fond et événements avec “ pile-up”. Lorsqu’il y a une détection, des sig-
naux générés par chaque bloc sont stockés pendant 128 ns. En observant les signaux nous
pouvons apprécier la variation du courant généré par la réaction de photo-multiplicateur
à l’énergie déposée par les particules: une impulsion quand il y a un seul impact, deux
impulsions (pile-up) ou le bruit de fond. Par conséquent, il était nécessaire de mettre
en oeuvre un algorithme pour établir l’amplitude et le temps d’arrivée des impulsions
en fonction du type d’événement enregistré. Au même temps, des corrections au temps
d’arrivée ont été introduites. Ces corrections sont nécessaires à cause des différences dans
la longueur des câbles et la position des blocs du calorimètre.

Pendant la reconstruction de l’énergie de l’électron diffusé n’a pas de sens d’utiliser
les signaux de tous les blocs dans le calorimètre, alors qu’il est èvident que e′ ne dépose
pas de l’énergie dans chacun d’eux. Si nous le faisions, nous ajouterions beaucoup du
bruit électronique. Il est donc hautement souhaitable, de déterminer quels sont les blocs
dans lesquels l’e′ déposé son énergie. Une façon de déterminer quels blocs ont collecté de
l’énergie de l’e′, c’est d’imposer un seuil sur l’amplitude du signal. Toutefois, une valeur
du seuil pour l’amplitude de chaque bloc n’est pas la procédure appropriée, parce que la
plupart de l’énergie de l’électron (environ 90%) est déposée en un seul bloc, tandis que le
reste est distribué parmi les blocs adjacents. La façon dont nous abordons la reconstruc-
tion de l’énergie, c’est d’imposer une valeur de seuil à la somme des amplitudes de chaque
combinaison possible de groupes de 4 blocs adjacents. Une fois sélectionnés les combi-
naisons de groupes de 4 blocs adjacents qui dépassent le seuil, un algorithme appelé “clus-
tering” créé pour former des “clusters” (combinaisons de blocs qui déterminent l’impact
d’une particule), recherche le maximum local et creé les zones d’impact en ajoutant des
blocs adjacents avec une amplitude en dessous de celle des blocs adjacents dejà ajoutés.
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Ainsi, il est possible d’extraire les informations nécessaires pour le calcul des paramètres
cinématiques des particules qui impactent sur le détecteur, que nous allons utiliser dans
le calcul de la section efficace.

Pendant l’acquisition de données nous trouvons des contributions provenants de réactions
qui n’appartiennent pas au DVCS. Ces détections modifient nos données et doivent être
soustraites. La plupart de ces détections sont rejetées par l’application de certaines
coupures sur certaines variables cinématiques, par exemple, le point d’impact sur la cible.
À cause des parois de la cible, les protons diffusés ne proviennent pas tous du LH2. Nous
pouvons reconstruire le point d’impact des électrons incidents avec les données obtenues
du HRS, et voir s’il y avait collision avec la cible. Dans le cas du HRS, une coupure
sur les variables cinématiques de l’électron diffusé afin de sélectionner les événements
dans la région optimale de l’acceptance est appliquée. Des coupures dans les zones
d’impact du calorimètre sont également appliqués, en écartant les détections dans les
parties extérieures de l’appareil. Cela est dû à la perte d’énergie dans ces zones.

La rejection de toutes les détections indésirables ne peut pas être effectuée uniquement
en utilisant des coupures sur les variables cinématiques. La soustraction de la contribution
de la electroproduccion de π0 doit être faite en utilisant d’autres méthodes. Une méthode
consisterait à évaluer la section efficace de cette réaction dans l’angle solide de l’expérience.
Cependant, nous avons choisi d’utiliser une simulation dans laquelle nous générons des
désintégrations π0, dont le calcul ci-dessus n’est pas nécessaire. Cette méthode génère des
désintégrations π0 en deux photons, afin d’évaluer le nombre d’impacts par un seul photon
sur le calorimètre (c’est dans ce cas que les données sont contaminées, parce que le DVCS
génère un seul photon réel). Il est aussi nécessaire d’évaluer la quantité de détections
fortuites pendant la prise des données. Pour cette évaluation, nous avons utilisé le spectre
de détections du calorimètre avec un temps d’arrivée des particules qui ne correspond
pas à celui du HRS. Comme le spectre de détections fortuites est continu, il doit être
équivalent à tout moment.

Après avoir effectué la soustraction du fond, nous devons appliquer des corrections
dues au bremsstrahlung créé par les électrons en traversant la cible. Cette correction se
situe dans les corrections radiatives externes appliquées aux données avant le calcul de la
section efficace. Les corrections radiatives internes sont divisées en corrections virtuelles
et corrections réelles. Les corrections virtuelles incluent les corrections de vertex et la po-
larisation du vide, tandis que les corrections réelles portent sur l’émission de photons réels
par des électrons. Une fois appliquées les corrections radiatives on commence le calcul
de la section efficace. Pour cela on utilise une simulation Monte Carlo, en vue d’inclure
la résolution et la géométrie des appareils utilisés dans le calcul. Dans la simulation,
des principaux appareils qui sont utilisés dans l’expérience, sont introduits: la chambre
de diffusion (où la cible se trouve), les tubes du faisceau d’électrons, le calorimètre et le
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HRS. La simulation comprend les matériaux des appareils, avec leurs propriétés respec-
tives. Les propriétés du milieu qui entoure les dispositifs sont également introduites.

Le calcul de la section efficace nous permet d’obtenir les différentes contributions
provenantes du BH et des “Compton Form Factors”, CIunp(F), ∆CIunp(F) et CIunp(F eff )
(facteurs associés à la décomposition en harmoniques de Fourier de l’interférence générée
par le DVCS et le BH). Pendant l’expérience, trois cinématiques ont été étudiées en
faisant varier la virtualité du photon. Pour chacune de ces cinématiques deux faisceaux
d’énergie différente ont été utilisés afin d’isoler des facteurs cinématiques indépendantes
de l’énergie du faisceau. Cela ouvre la possibilité de réaliser la Séparation Rosenbluth
de la contribution du DVCS du terme d’interférence. On a fait un “ binning” dans la
variable t (t correspond au carré de la quantité d’impulsion reçue par le proton), qui nous
permet d’obtenir dix sections efficaces différentes pour chaque cinématique (cinq pour
chaque bin en t et deux pour chaque énergie de faisceau), en fonction de l’angle entre les
plans hadronique et leptonique, ϕγ. Les résultats obtenus au cours de la réalisation de
cette thèse sont préliminaires. Dans tous les cas, nous avons observé une déviation de la
section efficace totale par rapport au BH. Pour des énergies plus élevées, la déviation est
plus grande. Nous avons observé aussi que le comportement des différentes contributions
sont très semblables à ceux trouvés dans les expériences précédentes.

Avec les données à notre disposition, il est possible d’effectuer la Séparation Rosen-
bluth, et d’obtenir la contribution du CFF CDV CSunp (F ,F∗), en utilisant les résultats présents
dans cette thèse. Toutefois, cette thèse ne comprend pas ce calcul, qui reste comme
travaux futurs. Il reste aussi à inclure les contributions des erreurs systématiques dans le
calcul des erreurs des sections efficaces. Une étude sur la diffusion inélastique profonde
(DIS), faite à partir des données de cette expérience, indique que les contributions des
erreurs systématiques pour le DIS sont situées autour de 3,5%. À partir de cette informa-
tion, une contribution qui ne dépasse pas le 5% dans le cas du DVCS est attendue. Dans
l’avenir, il reste comme objectif le calcul des sections efficaces polarisées.


