Introduction	E00-110: DVCS at 6 GeV	PR12-06-114	Conclusion
00 000		000 000 0000	

Deeply Virtual Compton Scattering in Hall A with CEBAF at 12 GeV

Carlos Muñoz Camacho

Los Alamos National Laboratory, Los Alamos, NM 87545

JLab PAC 30 Aug 21-25, 2006

Carlos Muñoz Camacho

DVCS in Hall A

Introduction	E00-110: DVCS at 6 GeV	PR12-06-114	Conclusion
00 000		000 000 0000	

Collaboration

- Ohio University
- Old Dominion University
- CEA/DAPNIA & CNRS/IN2P3
- Los Alamos National Laboratory
- Jefferson Lab
- Florida International University
- Massachusetts Institute of Technology
- Rutgers University
- Stony Brook University
- University of Virginia
- Seoul National University
- University of Ljubljana

(J. Roche)

- (C. E. Hyde-Wright)
 - (B. Michel)
- (C. Muñoz Camacho)

(Hall A Collaboration proposal)

Introduction ●O ○○○	E00-110: DVCS at 6 GeV ○ ○○○	PR12-06-114 000 000 0000	Conclusion
Motivations			
DVCS ($\gamma^* p$	$\rightarrow \gamma p$)		

DVCS through its φ -dependence and its interference with BH provides a rich and clean survey of GPDs and GPD integrals

Bjorken limit

$$\begin{array}{rcl} Q^2 & \gg & \Lambda_{\sf QCD} \ t & \ll & Q^2 \end{array}$$

 $x \pm \xi$: momentum fraction $t_{\min} - t$: Fourier conjugate to transverse position of parton in nucleon

Introduction	E00-110: DVCS at 6 GeV	PR12-06-114	Conclusion
000		000 000 0000	

Motivations

Interference with Bethe-Heitler (BH)

$$\mathcal{T}^2 = |\mathcal{T}_{BH}|^2 + \mathcal{I} + |\mathcal{T}_{DVCS}|^2$$

 \mathcal{T}_{BH} : independent of helicity, and *exactly known* up to form factors accuracy in our -t range (< 1 GeV²)

$$\frac{d\sigma}{d\Phi} = \frac{d\sigma_{BH}}{d\Phi} + \frac{d\sigma_{\mathsf{Int}}}{d\Phi} + \frac{d\sigma_{DVCS}}{d\Phi}$$

Introduction	E00-110: DVCS at 6 GeV	PR12-06-114	Conclusion
00 ●00		000 000 0000	
DVCS obsorvables			

Cross section measurements:

Separation of $\Im m$ and $\Re e$ parts of DVCS observables

1.- Helicity-correlated cross section: Smaginary part

$$\frac{d^5\Sigma}{d^5\Phi} = \frac{1}{2} \left[\frac{d^5\sigma^+}{d^5\Phi} + \frac{d^5\sigma^-}{d^5\Phi} \right] =$$

$$\underbrace{\sin(\phi_{\gamma\gamma})\Gamma_{1}^{\Im}\Im\operatorname{m}\left[\mathcal{C}^{I}(\mathcal{F})\right] - \sin(2\phi_{\gamma\gamma})\Gamma_{2}^{\Im}\Im\operatorname{m}\left[\mathcal{C}^{I}(\mathcal{F}^{\mathrm{eff}})\right]}_{\checkmark} + \underbrace{\sin\left(\phi_{\gamma\gamma}\right)\Gamma_{1}^{\Im}\eta_{s1}\Im\operatorname{m}\left[\mathcal{C}^{\mathrm{DVCS}}(\mathcal{F}^{\mathrm{eff}}, \mathcal{F}^{*})\right]}_{\checkmark}$$

|DVCS|² (twist-3)

- ► Different $\phi_{\gamma\gamma}$ dependence of Twist-2 & Twist-3 interference terms: \Rightarrow independent determination
- $\sin \phi_{\gamma\gamma} \Gamma_1^{\Im}$ term determines observable $\Im \left[\mathcal{C}^{I, \exp}(\mathcal{F}) \right]$:

 $\Im m \left[\mathcal{C}^{I, \exp}(\mathcal{F}) \right] = \Im m \left[\mathcal{C}^{I}(\mathcal{F}) \right] + \langle \eta_{s1} \rangle \Im m \left[\mathcal{C}^{\mathsf{DVCS}}(\mathcal{F}^{\mathsf{eff}}, \mathcal{F}^{*}) \right] \qquad |\langle \eta_{s1} \rangle|_{E00-110} < 0.01$

Carlos Muñoz Camacho DVCS in Hall A

Introduction ○○ ●○○	E00-110: DVCS at 6 GeV o ooo	PR12-06-114 000 000 0000	Conclusion
DVCS observables			
Cross sect	tion measurements:		
Separatio	n of \Im m and \Re e parts	of DVCS observa	ables
2 Helio	city-independent cross section	: Real part	
$\frac{d^5\sigma}{d^5\Phi} =$	$=\frac{1}{2}\left[\frac{d^5\sigma^+}{d^5\Phi}+\frac{d^5\sigma^-}{d^5\Phi}\right]=\underbrace{\frac{d^5\sigma(B }{d^5\Phi}}_{\text{Known free}}$	$\frac{H ^2}{2} + \underbrace{\Gamma \eta \mathcal{C}^{DVCS}(\mathcal{F}, \mathcal{F})}_{ DVCS ^2 (twist-2)}$	<u>, (*)</u> +
$(\Gamma_0^{\Re} - \cos(\phi_{\gamma\gamma}))$	$\Gamma^{\Re}_{1}) { m \Re e} \left[{\mathcal C}^{I}({\mathcal F}) ight] + \Gamma^{\Re}_{0,\Delta} { m \Re e} \left[{\mathcal C}^{I} + ight.$	$\Delta \mathcal{C}^{I}] \left(\mathcal{F} \right) + \cos(2\phi_{\gamma\gamma})$	$\Gamma_2^{ m R} m \Re e \left[{\cal C}^I ({\cal F}^{ m eff}) ight]$
-	Interference BH-	DVCS	
•	$\Re e \left[\mathcal{C}^{I, \exp}(\mathcal{F}) \right] = \Re e \left[\mathcal{C}^{I}(\mathcal{I}) \right]$	$\mathbf{\mathcal{F}})] + \langle \eta_{c1} \rangle \mathcal{C}^{DVCS}(\mathcal{F}, \mathbf{\mathcal{F}})$	$\mathcal{F}^*)$
▶ $\Re e \left[\mathcal{C}^{I, ex} \right]$	$\mathbf{p} + \Delta \mathcal{C}^{I, \text{ exp}} \right] (\mathcal{F}) = \Re \mathbf{e} \left[\mathcal{C}^{I} + \right]$	$-\Delta \mathcal{C}^{I}] (\mathcal{F}) + \langle \eta_{0} \rangle \mathcal{C}^{DV}$	$^{/CS}(\mathcal{F},\mathcal{F}^*)$
		$ \langle\eta_{0,c1} angle _{E00}$	-110 < 0.05

Los Alamos National Laboratory

Carlos Muñoz Camacho DVCS in Hall A

Introduction	E00-110: DVCS at 6 GeV	PR12-06-114	Conclusion
		000 000 0000	

DVCS observables

From cross sections to Compton Form Factors (\mathcal{F}) $\mathcal{F} = \{\mathcal{H}, \tilde{\mathcal{H}}, \mathcal{E}, \tilde{\mathcal{E}}\}$ Twist 2:

$$\mathcal{C}^{I}(\mathcal{F}) = F_{1}(t)\mathcal{H}(\xi,t) + \xi G_{M}(t)\tilde{\mathcal{H}}(\xi,t) - \frac{t}{4M^{2}}F_{2}(t)\mathcal{E}(\xi,t)$$

 $\begin{bmatrix} \mathcal{C}^{I} + \Delta \mathcal{C}^{I} \end{bmatrix} (\mathcal{F}) = F_{1}(t)\mathcal{H}(\xi, t) - \frac{t}{4M^{2}}F_{2}(t)\mathcal{E}(\xi, t) - \xi^{2}G_{M}(t)\left[\mathcal{H}(\xi, t) + \mathcal{E}(\xi, t)\right]$ $\mathcal{C}^{\mathsf{DVCS}}(\mathcal{F}, \mathcal{F}^{*}) = (1 - \xi^{2})\left[\mathcal{H}(\xi, t)\mathcal{H}^{*}(\xi, t) + \tilde{\mathcal{H}}(\xi, t)\tilde{\mathcal{H}}^{*}(\xi, t)\right] + \dots$

$\frac{\text{Twist 3:}}{\mathcal{C}^{I}(\mathcal{F}^{\text{eff}})} = F_{1}(t)\mathcal{H}^{\text{eff}}(\xi,t) + \xi G_{M}(t)\tilde{\mathcal{H}}^{\text{eff}}(\xi,t) - \frac{t}{4M^{2}}F_{2}(t)\mathcal{E}^{\text{eff}}(\xi,t)$ $\mathcal{C}^{\text{DVCS}}(\mathcal{F}^{\text{eff}},\mathcal{F}^{*}) = (1-\xi^{2})\left[\mathcal{H}^{\text{eff}}(\xi,t)\mathcal{H}^{*}(\xi,t) + \tilde{\mathcal{H}}^{\text{eff}}(\xi,t)\tilde{\mathcal{H}}^{*}(\xi,t)\right] + \dots$

 $(F_1(t), F_2(t), \text{ with } -t \ll Q^2)$

Introduction	E00-110: DVCS at 6 GeV	PR12-06-114	Conclusion
00 000		000 000 0000	
DVCS observables			

Cross section measurements

Cross sections give INDEPENDENT sensitivity to Real and Smaginary parts of (combinations of) Compton form factors

$$\begin{aligned} \mathcal{H}(\xi,t) &= \sum_{f} e_{f}^{2} \Biggl\{ i \underbrace{\pi \left[H_{f}(\xi,\xi,t) - H_{f}(-\xi,\xi,t) \right]}_{\text{\Immaginary part } (x = \pm \xi)} + \underbrace{\mathcal{P} \int_{-1}^{+1} dx \left[\frac{1}{\xi - x} - \frac{1}{\xi + x} \right] H_{f}(x,\xi,t)}_{\text{\Reeal part}} \Biggr\} \end{aligned}$$

Introduction	E00-110: DVCS at 6 GeV	PR12-06-114	Conclusion
00 000	000	000 000 0000	

Exclusivity

Missing mass squared $e \ p \rightarrow e \ \gamma \ X$ (E00-110)

- ► π^0 electroproduction: $e \ p \to e \ p \ \pi^0 X \to e \ p \ \gamma \ \chi$
- Associated DVCS: $e \ p \rightarrow e \ N \ \pi \ \gamma$
 - ▶ Non-resonant: $e \ p \rightarrow e \ N \ \pi \ \gamma \qquad M_X^2 > 0$
 - Resonant: $e \ p \to e \ (\Delta \text{ or } N^*)\gamma$

$$\begin{split} M_X^2 &> (M+m_{\pi^0})^2 \\ m_{\Delta}^2 &= 1.52 \, \mathrm{GeV}^2 \end{split}$$

 $d\sigma$: - rich and complex $\phi_{\gamma\gamma}$ structure beyond BH

- interesting & complementary GPD information (real part)

Carlos Muñoz Camacho

DVCS in Hall A

Los Alamos National Laboratory

Introduction	E00-110: DVCS at 6 GeV	PR12-06-114	Conclusion
00 000	0 0●0	000 000 0000	
Results			

Q^2 -dependence: twist-2 dominance

Larger Q^2 range for this proposal (2:1 for $Q^2 > 2 \text{ GeV}^2$) will provide:

- Accurate estimate of twist-2 dominance
- Better determination of higher twists

Carlos Muñoz Camacho

Los Alamos National Laboratory

Introduction	E00-110: DVCS at 6 GeV	PR12-06-114	Conclusion
00 000		0 00 000 0000	

Physics case

Physics reach

1. Q^2 variation:

- 2:1 range at each x_{Bj}
- Accurate measurement of twist-2 dominance
- 2. x_{Bj} variation (ξ dependence):
 - Precision data on variation of t-dependence with x
 - Study of transverse correlations
- 3. t variation:
 - ▶ 5 bins in $0 < t_{min} t < 1 \text{ GeV}^2$
 - Fourier-conjugate to the spatial distributions of quarks as a function of their momentum fraction x
- 4. π^0 electroproduction cross section:
 - Dominance of Twist-2 (isolation of leading twist)
 - Sensitive to nucleon GPDs H and E (× the π DA)

Introduction	E00-110: DVCS at 6 GeV	PR12-06-114	Conclusion
00 000		00 000 0000	

Physics case

 π^0 electroproduction: $\sigma_L + \sigma_T/\epsilon$

At leading twist:

$$\frac{d\sigma_L}{dt} = \frac{1}{2}\Gamma \sum_{h_N, h_{N'}} |\mathcal{M}^L(\lambda_M = 0, h'_N, h_N)|^2 \propto \frac{1}{Q^6} \qquad \sigma_T \propto \frac{1}{Q^8}$$
$$\mathcal{M}^L \propto \left[\int_0^1 dz \frac{\phi_\pi(z)}{z}\right] \int_{-1}^1 dx \left[\frac{1}{x-\xi} + \frac{1}{x+\xi}\right] \times \left\{\Gamma_1 \widetilde{H}_{\pi^0} + \Gamma_2 \widetilde{E}_{\pi^0}\right\}$$

Different quark weights: flavor separation of GPDs

$$|\pi^{0}\rangle = \frac{1}{\sqrt{2}} \{ |u\bar{u}\rangle - |d\bar{d}\rangle \} \qquad \qquad \widetilde{H}_{\pi^{0}} = \frac{1}{\sqrt{2}} \left\{ \frac{2}{3} \widetilde{H}^{u} + \frac{1}{3} \widetilde{H}^{d} \right\}$$
$$|p\rangle = |uud\rangle \qquad \qquad \qquad H_{DVCS} = \frac{4}{9} H^{u} + \frac{1}{9} H^{d}$$

Carlos Muñoz Camacho

`

10

Introduction	E00-110: DVCS at 6 GeV	PR12-06-114	Conclusion
000	000	000	
		0000	
Tradestart termine			

Upgrades (from E00-110)

- 1. Expanded PbF_2 calorimeter: $11 \times 12 + \underline{76}$ blocks.
 - Higher acceptance for π^0 measurements/subtraction.
 - ► Increased *t*-acceptance: $\Delta(t_{min} t) = 1 \text{ GeV}^2$.
- 2. Electronics:
 - ► ARS system (as E00-110) + Upgraded calorimeter trigger (2 thresholds to increase $ep \rightarrow ep\pi^0$ statistics).
 - ▶ FPGA & VME upgrades to increase livetime & bandwidth.
- 3. No proton detection: calorimeter can handle $4\times$ E00-110 rate
- 4. Flared beam pipe to minimize secondary background in calorimeter.

(Background dominated by Møller and $\pi^0 \rightarrow \gamma \gamma$ from target)

Introduction	E00-110: DVCS at 6 GeV	PR12-06-114	Conclusion
00 000		000 000	
		0000	

Technical issues

Calorimeter radiation damage

E00-110 experience:

- Dose dominated by e and π^0 above 15° and Møller below 10°
- Dose grows a factor 5 from 11.5° to 7.5°
- ▶ 20% gain loss without loss in M_X^2 /energy resolution

New experiment strategies:

- Minimum angle of the closest block: 7°
- ▶ Luminosity equal to the peak luminosity in E00-110 taking into account the distance to the target: $\mathcal{L} = 4 \cdot 10^{37} (D/110 \text{ cm})^2 \text{ cm}^{-2} \text{s}^{-1}$
- Blue light curing (MAMI-A4): 17 h to cure a transparency loss of 25%

Curing every 6th day of running at the minimum angle

Total of 12 curing days for 88 beam days

Missing mass resolution

(Cf. Table V for all kinematic settings)

E00-110 This proposal

Very similar M_X^2 resolution \Rightarrow same exclusivity with $e \gamma$ detection only.

Carlos Muñoz Camacho

Los Alamos National Laboratory

Introduction	E00-110: DVCS at 6 GeV	PR12-06-114	Conclusion
		0000	
Dustanted we sales			

Projected results

Cross sections

- Model by Vanderhaeghen, Guichon & Guidal (VGG), with factorized t-dependence
- 250k events/setting or 40k events per t-bin
- Similar statistical accuracy as E00-110

Helicity-dependent cross sections (pb/GeV⁴)

Carlos Muñoz Camacho

Los Alamos National Laboratory

Introduction	E00-110: DVCS at 6 GeV	PR12-06-114	Conclusion
		0000	

Projected results

Systematic errors

	Relative errors (%)		
		E00-110	proposed
Luminosity	target length and beam charge	1	1
HRS-Calorimeter	1.5	1	
	2	2	
	0.1	0.1	
DVCS selection	3	1	
e(p,e' γ) π N contamination		2	3
	2	1	
Tota	4.9	4.1	
Beam	2	1	
Total c	5.3	4.2	

Carlos Muñoz Camacho

Los Alamos National Laboratory

DVCS in Hall A

Introduction	E00-110: DVCS at 6 GeV	PR12-06-114	Conclusion
00 000		000 000 0000	

Summary

- Absolute DVCS cross sections in almost the complete kinematic region of JLab12
- Precision determination of Twist-2 and Twist-3 observables: ξ, t (and Q²) scan
- π^0 electroproduction cross sections
- ... using the successful experimental technique of E00-110 (nucl-ex/0607029)

This experiment requires 88 days of beam + 12 days for calorimeter curing

Future extentions: DVCS on the neutron, recoil polarimetry...

Carlos Muñoz Camacho

DVCS in Hall A

 π^0 subtraction

Calorimeter damage & calibration $_{\rm OO}$

Supplementary slides

Carlos Muñoz Camacho

DVCS in Hall A

Los Alamos National Laboratory

Equipment

- Compton polarimeter
 - LPC-Clermont: equipment & technical manpower

HRS electronics:

- LPC-Clermont: pre-trigger electronics
- ODU: technical manpower for DAQ integration
- \blacktriangleright PbF_2 :
 - LPC-Clermont:
 - Upgrade to trigger & DAQ
 - PMT custom bases & preamps.
 - Other collaborators:
 - 76 additional crystals & PMTs

Recoil polarimetry

- Solenoid (or Helmholtz coil) on the target for high luminosity recoil detection
- Recoil proton polarimetry $H(\vec{e}, e'\gamma\vec{p})$:
 - ▶ 7 cm Carbon analyser \rightarrow FoM ($p > 500 \, {\rm MeV/c}$) > 0.005
 - Full separation of all four GPDs
- ► Coherent light nuclei: $D(e, e'\gamma D)$, ${}^{3,4}He(e, e'\gamma {}^{3,4}He)$

Backup ○○● ○○ π^0 subtraction 0 00 Calorimeter damage & calibration $_{\odot \odot}$

Extensions

DVCS on the neutron and deuterium

Carlos Muñoz Camacho

Los Alamos National Laboratory

Kinematics

 π^0 subtraction 0 00 Calorimeter damage & calibration $_{\rm OO}$

Kinematic constraints

Carlos Muñoz Camacho

Los Alamos National Laboratory

DVCS in Hall A

Backup ○○○ ○● ○○

Kinematics

 π^0 subtraction

Calorimeter damage & calibration $_{\odot \odot}$

Kinematic settings

Q^2	k	x_{Bi}	$q'(0^\circ)$	D	$ \theta_q$	θ_{calo}^{min}	$ t_{min}$	t_{max}	$\sigma(M_X^2)$	$ $ $\mathcal{L}/10^{38}$
GeV^2)	(GeV)	,	(GeV)	(m)	(deg)	(deg)	(GeV^2)	(GeV^2)	(GeV^2)	(cm^{-2}/s)
3.0	6.6	0.36	4.35	1.5	11.7	7.1	-0.16	-0.42	0.23	0.75
4.0	8.8	0.36	5.83	2.0	10.3	7.0	-0.17	-0.42	0.26	1.3
4.55	11.0	0.36	6.65	2.5	10.8	7.0	-0.17	-0.42	0.27	2
3.1	6.6	0.5	3.11	1.5	18.5	11.0	-0.37	-0.64	0.17	0.75
4.8	8.8	0.5	4.91	2.0	14.5	8.9	-0.39	-0.70	0.20	1.3
6.3	11.0	0.5	6.50	2.5	12.4	7.9	-0.40	-0.72	0.20	2.
7.2	11.0	0.5	7.46	2.5	10.2	7.0	-0.40	-0.75	0.25	2.
5.1	8.8	0.6	4.18	1.5	17.8	10.4	-0.65	-1.06	0.16	0.75
6.0	8.8	0.6	4.97	2.0	14.8	9.2	-0.67	-1.05	0.18	1.3
7.7	11.0	0.6	6.47	2.5	13.1	8.6	-0.69	-1.10	0.20	2.
9.0	11.0	0.6	7.62	3.0	10.2	7.3	-0.71	-1.14	0.22	3.
						edge			• •	

Carlos Muñoz Camacho

Los Alamos National Laboratory

Backup 000 00 00 DVCS² π^0 subtraction

Calorimeter damage & calibration 00

 Fourier analysis of cross section combines Bilinear terms into effective BH*DVCS observables, with acceptance averaged kinematic weights η_Δ.

$$\begin{split} \eta_{sI} &= \left\langle \mathcal{P}_{I} \mathcal{P}_{2} K_{sI}^{DVCS} / K_{sI}^{I} \right\rangle_{acc} \\ \eta_{cj} &= \left\langle \mathcal{P}_{I} \mathcal{P}_{2} K_{cj}^{DVCS} / K_{cj}^{I} \right\rangle_{acc} \propto \frac{-t x_{Bj}}{Q^{2}} \end{split}$$

Backup
000
00
$DVCs^2$

 π^0 subtraction

Calorimeter damage & calibration

 π^0 subtraction $\circ_{\circ\circ}$ Calorimeter damage & calibration 00

π^0 substraction $(\pi^0 \rightarrow \gamma \gamma)$

► Symmetric decay: minimum angle in lab of 4.4° for $E_{\pi^0}^{\max} = 3.5 \text{ GeV}$ ⇒ Clusters separation

Asymmetric decay: sometimes only 1-cluster

⇒ Mistaken for DVCS event

 π^0 subtraction

Calorimeter damage & calibration 00

Procedure

Substraction procedure:

- 1. Compute kinematics of each *detected* π^0 (2 clusters in calorimeter).
- 2. Randomize the decay : sample $\cos \theta$ randomly between [-1,1] a big number of times (~ 5000).
- 3. Compute the ratio of 2-cluster/1-cluster events generated by this π^0 (\sim 30% in average).

Repeating this procedure for *each* detected π^0 provides an automatic normalization of the contamination as a function of Q^2 , t, φ , ...

 π^0 subtraction \circ $\bullet \circ$ Calorimeter damage & calibration

π^0 subtraction results for different (t, $\phi_{\gamma\gamma}$) bins

 π^0 subtraction \circ \circ Calorimeter damage & calibration 00

π^0 subtraction results for different $(t, \phi_{\gamma\gamma})$ bins

200

Calorimeter damage & calibration

π^0 subtraction results for different $(t, \phi_{\gamma\gamma})$ bins

Calorimeter damage & calibration $_{\odot \odot}$

π^0 subtraction results for different $(t, \phi_{\gamma\gamma})$ bins

Carlos Muñoz Camacho

Los Alamos National Laboratory

DVCS in Hall A

Carlos Muñoz Camacho

DVCS in Hall A

Calorimeter damage & calibration $_{\odot \odot}$

Calorimeter performances

Calorimeter resolution

Figure: Energy resolution obtained in both elastic calibration: 2.4%, the average energy of the incident electron being 4.2 GeV. The results of the second calibration when first calibration coefficients are used are also plotted to show the necessity of a careful monitoring of the coefficients in between these two calibration points.

 π^0 subtracti

Calorimeter damage & calibration o

Calorimeter performances

Figure: Relative variation of the calorimeter calibration coefficients between two elastic calibration. Their values are histogrammed (left) and plotted as a function of the block number (right). Larger block numbers correspond to blocks closer to the beamline. These blocks have accumulated a larger radiation dose and their gain have decreased more than those of other blocks.