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Abstract

The A, j-asymmetries of the 3We(é,ép) pn reaction have been calculated using different models of the NN-interaction
which provide analytic representation of the solutions of the Faddeev equations. Strong sensitivity to the mixed symmetry
components was discovered at P, ~ 20 — 60 MeV /c. In the quasi-elastic region at P, ~ 0 alarge asymmetry is found to be
model-independent and arises from the FSI of the spectator nucleons. © 1998 Elsevier Science B.V. All rights reserved.
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Recently the possibility of examining the *He
wave function (WF) in 3Hé(& € p) pn reaction was
shown [1]. However, the sensitivity of A, -asymme-
tries to the mixed symmetry component (S) and
their dependence upon the models of strong interac-
tion was not investigated. Also, it is not evident why
such a large asymmetry was obtained in [1] at low
(and zero) recoil momenta (P.) (see Fig. 3 in [1]),
without final state interactions (FSI). Since the pro-
tons in the main full symmetric configuration (S) are
‘“not polarized’’, the PWIA-asymmetry should be
very close to zero at low P, (see below).

In this letter we will show that the large asymme-
try at low P, arises due to FSI inside spectator
pn-pair. Moreover, this asymmetry a P, ~0 is
model-independent and may be used for the calibra-
tion of the measurements. Also we will investigate

the sensitivity of asymmetries to the mixed symme-
try components and different nuclear models, for
which solutions of Faddeev equations with different
NN-potentials will be used.

The S-state part of the three-body wave function
(WF) may be represented [2] as:

V(PHE) s wave= — WE+ WE" — Vg, (1)

Here W3 is the fully symmetric space Swave com-
ponent, accounting for ~ 90% of WF2. W', " are
the space S-components with mixed symmetry,
which indicate the deviation from the full symmetry
state due to spin-momentum correlations and account
for ~ 2% of the WF2. The spin-isospin pieces of the
WF are the fully antisymmetric £2 and the mixed
symmetry &', ¢£” configurations. The S-components
are intriguing objects: i) their probability is strongly
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correlated with binding energy [3] as Py ~ Ez2*; i)
they do not exist for the deuteron; iii) for *He they
have [2] Py ~ 1 — 2%, while for “He we can expect
their strong suppression (Pg < 0.1%) due to the
higher binding energies.

In addition to S and S-components, the *He WF
contains P- and D-waves. The P-state probabilities
are extremely small [2] (~ 0.1%) and we will not
discuss them here. Various D-wave components with
atotal probability estimated [2] at P, ~ 8% arise due
to the tensor part of the NN-forces and become
important only at high P. (see, for instance, [1,4,5)).

For the (e,€p) channd in quasi-elastic kinemat-
ics: v~ €5+ (M?+ g?)2 — m (m is nucleon mass,
q=(v,q) is 4-momentum of the photon and e, is
the binding energy) proton-pole diagrams with either
singlet or triplet spectator pn-pairs will dominate at
low P,. Their amplitudes are determined by two
vertices G, , of the *He break up with pn-pairs in
the triplet CHe — p + { pn},) and singlet CHe — p +
{ pn}y) spin states [4]:

G =(¥°—¥")/V2; G=—(¥°+V¥")/V2.

(2
Thus, it is only owing to the S-component that the
vertices (2) are not the same.

For the main S-configuration the amplitude for
production of a singlet pn-spectator pair corresponds
to absorption of the photon by a proton whose spin is
oriented opposite to the nuclear spin direction, while
for the amplitude with a triplet spectator pn-pair
another proton with its spin along the nuclear one
will absorb the virtual photons. In PWIA the squares
of these amplitudes (for polarized *He) will have the
same magnitude, but opposite signs. As a result,
PWIA asymmetries of the 3Hé(g€p)pn reaction
calculated on the basis of only full symmetric con-
figuration will be equal to zero. This reflects the fact
that the protons in the S-configuration of *He WF
are ‘'not polarized’. So, at low P, the asymmetries
in PWIA may arise only due to S-component and
we can expect their strong sensitivity to the mixed
symmetry configuration. However, the magnitudes
of A, , should be very small, since the admixture of
S is not more than 2%.

Using the explicit form of the *He — p + { pnj
vertices [4] with polarized ®He, nuclear electromag-
netic (EM) currents of the proton-pole diagrams with

singlet (J{”) and triplet (J") spectator pn-pairs
may be represented (without re-scattering):

IO =G [U(p)F, (P +m) (v, + pl/2m)ysUs(T)]

x[U(py) (v —k,/2mCUT(N)],  (3)
3O = G,[U(p)F,(F +m)Us(T)]
x[U(py)vsCUT(M)]. (4)

Here p'( p) is the momentum of the observed proton
before (after) photoabsorption; T and S are the target
momentum and spin vectors while p, and n are the
momenta of the un-observed proton and neutron:
g+ T=p+p, +n The center of mass and relative
momenta of the spectator pn-pair have the form:
P.=p,;+n,k=(p; —n)/2 (in the lab. frame P, =
—p'). Furthermore, F, is the yp p-vertex, v, s are
4 X 4 Dirac matrices, p= 1y, p,; U(p) is a bi-spinor
and C is the matrix of charge conjugation.

The EM tensor of ultra-relativistic polarized elec-
trons has the form:

—1© 9.
L, = |/(“) + )\IL(L,,),

Ifj) =2ig,,,59, K,
|,4(JSJ) = 2( kl,u k2v + kZ;Lkly) + ng;u/

where kK, ,, is the momentum of initial (final) elec-
tron, g =k, — k,, and A = 1(—1) corresponds to the
initial electron polarization along (opposite) to its
3-momentum.

Taking the squares of (3),(4), using X Ug(T)U(T)
=(T+ M1 -9 and considering low P, (in
quasi-elastic kinematics the relative momenta k will
be smal too: k*~ 3P2—P.q), and neglecting the
terms of order (P, /m)3,(k/m), we get a factorized
equation for the asymmetry of the exclusive
3gA( 8 R
Hé(€ € p)pn reaction:

A= ky(P) X A®¥(S,q%v). (5)

Here A®P(S,g?,v) hasthe meaning of the‘‘ quasi-free
proton asymmetry’’:

A‘?ﬁ(S,qz,v)
195p(( B +m)SysF, (B +m)F, )

TTes{(prmEprmE)
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while «,(P,) may be called the *‘effective proton
polarization’” in *He:

ko(P) = {GZ - GP} /(G2 + 3G} (7)

Substituting (2) into (7), we see the quasi-elastic
PWIA asymmetry of the 3H&(& € p) pn reaction are
proportional to the admixture of the mixed symmetry
configuration:

Kp(P)pwia ~ ¥/ P < 1. (8

The exact ‘‘covariant PWIA’ calculations of the
asymmetry are given in Fig. 1 by the dashed-dotted
curves 1 and 2 for the Reid Soft Core (RSC) and the
Yamaguchi-Tabakin (Y-T) potentia, respectively.
Without S-components all PWIA calculations are
equal to zero. So, the PWIA asymmetry is very
sensitive to S-components, but its small value (1 —
3%) reflects insignificant ‘* proton polarization’” (8).

Now let us examine what transpires when FSl is
taken into account. At low P, and high g the major
FSI will be between the spectator nucleons, since
their relative momenta k will be small due to en-
ergy-momentum conservation, while the relative mo-
mentum of the struck proton (| p| ~ [g]) with respect

to the spectator pn-pair will be large enough, so that
their interaction may be neglected (at least [1] at
P, < 0.2GeV /c). Thus, accounting for the FSI in the
spectator pn-pairs of the *He — p + { pn};, vertices
in this particular case ssimply corresponds to replac-
ing the functions G, in Eq. (7) by the re-normalized
[4] ones G{}’, including additionally the loops with
half-off-shell amplitudes f(k’,k,E,) of the elastic
pn-scattering in the 'S- and 3S -states:

G '(P.k)

1 fo (K, K E)
272 kK2 —k2—je

=fd3k’{6(k— K') +
X Gy P,K'), (9)

First let us consider P, ~ 0 (which means |k| ~ 0).
In this case the Migdal-Watson approximation [6] for
the FSI of spectator nucleons will be available and
the *‘re-normalized”” vertex G{!’ has the factorized
form: G{{(P,k) = Gg (P,k) x A (k?) with
A (k?) ~ (k?/m+ g~ for the ‘‘scattering
length”” approximation (e is the virtua (rea)
level in the singlet (triplet) pn-pair). As a result of
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Fig. 1. The A,-asymmetry of the 3H&(& e p) pn reaction for the Raid Soft Core potential (curves 1) and the Y amaguchi-Tabakin one (curves
2) in the collinear kinematics at E, = 0.88 GeV /c and |q| = 0.4 GeV /c as a function of P,. Solid (dashed) curves reflect total calculations

with S+ S (S) configurations.
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the strong differences of the singlet and the triplet
pn-interaction at low energies, the main contributions
in the numerator and denominator of Eq. (7) will be
from ¥3, which will be cancelled in the ratio. So,
due to the FSI between spectator nucleons the effec-
tive ‘‘ proton polarization’” will be very close to 1
(e5/ef <1 a P.~0 and it will not depend upon
the *He structure:

Kp( P = 0)pwiarrs ~ 1 — 4€5/ €. (10)

According to Egs. (5), (6), (10), quasi-elastic asym-
metries at P, = 0 will be rather large (very close to
the asymmetries on the free polarized proton), and
practically model-independent. Thus, the polarized
*He-target is a simple polarized proton target (10) if
P. — 0, the same as for the 3Heé(& € p)d reaction [5],
except that the sign of A, , in the three-body chan-
nel will be opposite. So, the asymmetry near zero
recoil momentum may be used for the calibration of
measurements. With increasing P, the relative mo-
mentum |k| will quickly increase and exact Eq. (9)
should be used in (7).

The asymmetry calculated according to Egs. (3),
(4) on the basis of S+ S components with exact
accounting of FSI inside spectator system via Eq. (9)
is shown in Fig. 1 for the RSC (Y-T) potential by the
solid curve 1 (2), while the same calculation, but on
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the basis of only the S.component, are given by the
dashed curve 1 (2). The same NN-potentials were
used to calculate the half-off-shell pn-amplitudes in
(9), as were used in the Faddeev eguations for the
bound-state vertices. We see that a P, = O there is
no sensitivity of A, to the mixed symmetry compo-
nents nor to the choice of NN-potentials. At P, = 20
— 60 MeV /c the differences of 'S, —3S FSI and
the contribution of S-components become compara-
ble and their interference decreases the asymmetry
considerably. It isinteresting that at P, < 60 MeV /c
asymmetries calculated without S for different po-
tentials (RSC and Y-T) practically coincide. This
means that the Migdal-Watson factorization is valid
for G{{’ up to P, ~60 MeV /c. Then the nuclear
structure will be cancelled in the ratio for «,(P,)
when neglecting the S-components, and the asym-
metry is determined only by the low-energy be-
haviour of the singlet /triplet pn-interaction, which
is the same for any redlistic potentials. The presence
of mixed symmetry components prevents the nuclear
structure cancellation and changes results for various
potentials in different amounts. The A_-asymmetry
has the same shape and sensitivity to S but a factor
of two smaller magnitude and we will not show it
here.

In Fig. 2 the same calculations of the asymmetry
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Fig. 2. The samelikein Fig. 1, but as a function of |g| a P, = 0.04 GeV /c.
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at P, =40 MeV /c are plotted against the 3-momen-
tum transfer |ql. There is a strong sensitivity of A,
to the S-component, which increases with |gl, while
the asymmetry does not depend upon the model of
the full symmetric configuration, when neglecting
the S-component.

The comparison of the exact calculations with the
corresponding results obtained on the basis of the
factorized form (5) shows that they deffer by about
of 1% at P, <100 MeV /c and can not be distin-
guished in Fig. 1,2. So, simple analytical, factorized
representation (5) of the asymmetry in terms of the
‘“‘quasi-free proton asymmetry’’ (6) and ‘‘effective
proton polarization’” (7), together with vertex re-nor-
malization (9), is a good approximation in the quasi-
elastic region at high |g| and small P..

To summarize, the A, -asymmetries in collinear
kinematics of the three-body (e, € p) break up of the
polarized *He-target by polarized electrons appear to
be very sensitive to the mixed symmetry component
at P, ~ 20— 60 MeV /c. In addition, the dependence
of the asymmetry on the S-component admixture
strongly increases with increasing momentum trans-
fer, while the calculations without S are model
independent at P, < 60 MeV /c. A large asymmetry
of the 3Hé(&€p)pn reaction at P, ~ 0 arises only
due to the FSI of spectator nucleons: (i) its value is
determined by only the difference of the low energy

singlet /triplet pn-interaction, and (ii) it does not
depend on the nuclear structure. The asymmetry is
model-independent near zero recoil momentum and
its value may be used for the calibration of measure-
ments. Finaly, a factorized form of the asymmetry
for 3He(& e p) pn reaction in the quasi-elastic region
was obtained.
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