The ³He(e,e'n) Channel in A_y and G_E^n Measurements

Elena Long Joint Division of Nuclear Physics and Physical Society of Japan Meeting October 14th, 2009

GEⁿ: World Data

Ay: $^{3}\text{He}^{\uparrow}(e,e'n)$

In PWIA, Ay in Quasi-Elastic ³He (e,e'n) is exactly zero

Previous to this experiment, no measurements of Ay have been done at large Q²

In PWIA, Ay in Quasi-Elastic ³He (e,e'n) is exactly zero

Previous to this experiment, no measurements of Ay have been done at large Q²

We will analyze high precision data points taken at 0.1 [GeV/c]², 0.5 [GeV/c]², and 1.0 [GeV/c]²

In PWIA, Ay in Quasi-Elastic ³He (e,e'n) is exactly zero

Previous to this experiment, no measurements of Ay have been done at large Q²

We will analyze high precision data points taken at 0.1 [GeV/c]², 0.5 [GeV/c]², and 1.0 [GeV/c]²

Previous experiment at NIKHEF measured A_y at 0.2 [GeV/c]²

In PWIA, Ay in Quasi-Elastic ³He (e,e'n) is exactly zero

Previous to this experiment, no measurements of Ay have been done at large Q²

We will analyze high precision data points taken at 0.1 [GeV/c]², 0.5 [GeV/c]², and 1.0 [GeV/c]²

Previous experiment at NIKHEF measured A_y at 0.2 [GeV/c]²

Faddeev calculations by Bochum group correctly predicted FSI result where other groups expected a much lower value Need to make sure that the Nagorny plots are ok to use

Ay: ${}^{3}\text{He}^{\dagger}(e,e'n)$

[1] J. M. Laget, Phys. Lett. B273, 367 (1991).

[2] W. Gloeckle, H. Witala, D. Huber, H. Kamada, and J. Golak, Phys. Rept. 274, 107 (1996).

Data will test state of the art calculations at high Q²

Data will test state of the art calculations at high Q²

Neutron form factor extractions must correctly predict this asymmetry

Data will test state of the art calculations at high Q²

Neutron form factor extractions must correctly predict this asymmetry

In calculating G_Eⁿ from ³He(e,e'n), A_y from ³He[†](e,e'n) will also be calculated

Data will test state of the art calculations at high Q²

Neutron form factor extractions must correctly predict this asymmetry

In calculating G_E^n from ³He(e,e'n), A_y from ³He[†](e,e'n) will also be calculated

At high Q², any non-zero result is indicative of effects beyond impulse approximation

 $A_y: {}^{3}He^{\dagger}(e,e')$

$A_y: {}^{3}He^{\dagger}(e,e')$

Born Approximation, assuming only one photon exchange, often used to obtain nucleon structure

$A_y: {}^{3}He^{\dagger}(e,e')$

Born Approximation, assuming only one photon exchange, often used to obtain nucleon structure

In this approximation, A_y is exactly zero

Born Approximation, assuming only one photon exchange, often used to obtain nucleon structure

In this approximation, A_y is exactly zero

As more precise data is taken, multiple photon exchange cannot be ignored

Born Approximation, assuming only one photon exchange, often used to obtain nucleon structure

In this approximation, A_y is exactly zero

- As more precise data is taken, multiple photon exchange cannot be ignored
- A precise, non-zero measurement of Ay will provide new experimental constraints on GPD models and form factor extractions

T. Powell et al., PRL 24, 753 (1970)

T. Averett, J.P. Chen, X. Jiang, *et al.*, E05-015 Jefferson Lab Proposal, URL: <u>http://www.jlab.org/exp_prog/proposals/05/PR05-015.pdf</u> (2005)

Ay: ³He^{\dagger}(e,e'n) and ³He^{\dagger}(e,e')

These experiments, E08–005 (e,e'n) and E05–015 (e,e'), ran from April 26th through May 10th in Jefferson Lab's Hall A

The kinematics taken were:

E₀ [GeV]	E' [GeV]	θ _{lab} [°]	Q ² [GeV/c] ²	lql [GeV/c]	θ _q [°]
1.25	1.22	17	0.13	0.359	71
2.43	2.18	17	0.46	0.681	62
3.61	3.09	17	0.98	0.988	54

Left HRS

Detects electrons from ³He(e³He(e,e'd), and ³He(e,e'p)

q long. 3He(e,e') -> GMn low p-miss 3He(e,e'p)->GEp & GMp ->GEp&GMp for checking purposes Ay, Ax, Az

<u>BigBite</u>

Detects protons and deuterons from ³He(e,e'p) and ³He(e,e'd)
 Along with LHRS allows A_y, A_x, and A_z measurements to be made
 At low P_m, G_E^p and G_M^p are also measured (for checking purposes)

Left HRS

Detects electrons from ³He(e,e'), ³He(e,e'd), and ³He(e,e'p)

> Incident Polarized Electron

> > $A_v o$

q long. 3He(e,e') -> GMn low p-miss 3He(e,e'p)->GEp & GMp ->GEp&GMp for checking purposes Ay, Ax, Az

BigBite

 Detects protons and deuterons from ³He(e,e'p) and ³He(e,e'd)
 Along with LHRS allows A_y, A_x, and A_z measurements to be made
 At low P_m, G_E^p and G_M^p are also

measured (for checking purposes)

q long. 3He(e,e') -> GMn q trans. 3He(e,e'n) ->GEn Ay

Hall A Neutron Detector

Detects neutrons from ³He(e,e'n)
 Along with RHRS allows G_Eⁿ and A_y measurements to be made

Right HRS

Detects quasi-elastically scattered electrons from ³He(e,e'n) and ³He(e,e')
With q along beam polarization on ³He(e,e'), allows a G_Mⁿ measurement to be made

q long. 3He(e,e') -> GMn q trans. 3He(e,e'n) ->GEn Ay

Hall A Neutron Detector

Detects neutrons from ³He(e,e'n)
 Along with RHRS allows G_Eⁿ and A_y measurements to be made

Incident Polarized Electron

Right HRS

OLA

Electron

Detects quasi-elastically scattered electrons from ³He(e,e'n) and ³He(e,e')
 With q along beam polarization on ³He(e,e'), allows a G_Mⁿ measurement to be made

G_Eⁿ: Electric Form Factor of the Neutron

 RHRS Central Momentum is
 E'=2.175 GeV, 2.225
 GeV, and 2.250 GeV

 Acceptance of ±0.103 GeV

Data will cover the 0.4-0.5 (GeV/c)²
 peak as well as 1.0 (GeV/c)²

G_Eⁿ: Electric Form Factor of the Neutron

The data points taken will also provide a comparison between the world deuteron data as well as the world ³He data

No free neutron target available

²H has a loosely bound neutron

³He has a similar magnetic moment to its neutron
 Agreement between ²H and ³He is expected

GEⁿ: Electric Form Factor of the Neutron S' S D n n р p n р

90% Spatially Symmetric ~1.5% Mixed Symmetry Configuration

~8.5% Not Observables

GEⁿ: Electric Form Factor of the Neutron

Thank You

Thanks to the E05-015, E08-005, and E05-102 Collaborations

Spokes People

T. Averett, College of William and Mary (E05-015, E08-05) J. P. Chen, Thomas Jefferson National Accelerator Facility (E05-015) S. Gilad, Massachusetts Institute of Technology (E05-102) D. Higinbotham, Thomas Jefferson National Accelerator Facility (E05-102, E08-005) X. Jiang, Rutgers University (E05-015) W. Korsch, University of Kentucky (E05-102) B. E. Norum, University of Virginia (E05-102) S. Sirca, University of Ljubljana (E05-102) V. Sulkosky, Thomas Jefferson National Accelerator Facility (E08-005)

<u>Graduate Students</u>	K. Allada	<u>Collaboration</u>		F. Salvatore
G. Jin, University of Virginia	B. Anderson	S. Golge	P. Markowitz	M. Shabestari
E. Long, Kent State University	J. R. M. Annand	O. Hansen	M. Meziane	A. Shahinyan
M. Mihovilovič, Jožef Stefan Institute	W. Boeglin	T. Holmstrom	R. Michaels	B. Shoenrock
Y. Zhang, Lanzhou University	P. Bradshaw	J. Huang	B. Moffit	J. St. John
	M. Canan	H. Ibrahim	N. Muangma	A. Tobias
<u>Run Coordinators</u>	C. Chen	E. Jensen	H. P. Khanal	W. Tireman
. Camsonne, Thomas Jefferson National Accelerator	R. De Leo	M. Jones	K. Pan	G. M. Urciuoli
Facility	X. Deng	H. Kang	D. Parno	D. Wang
P. Monaghan, Hampton University	A. Deur	J. Katich	E. Piasetzky	K. Wang
S. Riordan, University of Virginia	C. Dutta	C. W. Kees	P. Pradshaw	J. Watson
B. Sawatzky, Temple University	L. El Fassi	P. King	M. Posik	B. Wojtsekhowski
R. Subedi, University of Virginia	D. Flay	J. LeRose	A. J. R. Pucket	t Z.Ye
V. Sulkosky, Massachusetts Institute of Technology	F. Garibaldi	R. Lindgren	X. Qian	X. Zhan
Y. Qiang, Duke University	H. Gao	H. Lu	X. Qui	X. Zheng
B. Zhao, College of William and Mary	R. Gilman	W. Luo	A. Saha	L. Zhu

