

Single Spin Asymmetry (SSA) in ³He⁽(e, e') Bo Zhao

College of William and Mary

For the Hall-A collaboration at Jefferson Lab

Quasi-Elastic ³He(e, e')
 Deep-Inelastic ³He(e, e') { Joe katich, Ph.D. thesis }

2011 GHP workshop, Anaheim, CA

OUTLINE

- Physics Motivation
- Experimental setups
- Data analysis
- Results and future experiments

Born scattering and beyond

G_{E}^{p}/G_{M}^{p} data

Rosenbluth w/2-y corrections vs. Polarization data 1.2 1.0 0.8 $G_E^p / (G_M^p/\mu_p$ 0.6 0.4 Pol.: Jones et al. Pol.: Gayou et al. Pol.: Gayou et al. fit 0.2 Rosenbluth, Mo-Tsai corr. only ∇ Rosenbluth, incl. 2y corr. w/gauss. GPD 0.0 2 3 5 6 8 0 4 7 1 Q^2 (GeV²)

A. Afanasev et al. Phys. Rev. D 72, 013008 (2005)

Target Single-Spin Asymmetry

- A^{Born} = 0 using Time-Reversal Invariance
- $A_{\nu} \neq 0$ due to imaginary part of $1\gamma \otimes 2\gamma$ interference

Connection with Generalized Parton Distributions (GPDs)

- Assume scattering described by handbag diagram with box and crossed diagrams for 2γ exchange at hard vertex H.
- Evaluation of 2γ box diagram involves full nucleon response to doubly virtual compton scattering. Elastic intermediate contribution well-known. Calculate inelastic response using GPDs. (P.A.M. Guichon etc., Phys. Rev. Lett. 91, 142303 (2003))

Connection with GPDs (con't)

Y.-C. Chen, A. Afanasev, S. J. Brodsky, C. E. Carlson and M. Vanderhaeghen, PRL 93 (2004) 122301

$$\begin{split} A_{y} &= \sqrt{\frac{2 \varepsilon \left(1 + \varepsilon\right)}{\tau}} \frac{1}{\sigma_{R}} \left\{ -G_{M} \mathcal{I}m\left(B\right) + G_{E} \mathcal{I}m\left(A\right) \right\} \\ A &= \int_{-1}^{1} \frac{dx}{x} \tilde{K} \sum_{q} e_{q}^{2} \left[H^{q}(x,0,t) + E^{q}(x,0,t) \right] \\ B &= \int_{-1}^{1} \frac{dx}{x} \tilde{K}' \sum_{q} e_{q}^{2} \left[H^{q}(x,0,t) - \tau E^{q}(x,0,t) \right] \end{split}$$

- Im(A) and Im(B) are non-zero through 2γ contribution.
- Measuring neutron A_y provides new constrain on specific GPD moment.

Theoretical prediction

Normal analyzing power - neutron

Facility at Jefferson Lab

Experimental setups

Polarized ³He target

Performance of ³He target

- High luminosity: $L(n) = 10^{36} \text{ cm}^{-2} \text{ s}^{-1}$
- Record high 60~ 65% polarization in beam with automatic spin flip / 20 minitues

Quasi-Elastic (QE) Ay Kinematics

• This QE A_v experiment (E05-015) was run

from April 26th to May 12th in 2009

• The Kinematics of this QE A_v experiment:

E_0	E'	θ_{lab}	Q ²	q	θ_{a}
[GeV]	[GeV]	[Deg]	[GeV] ²	[GeV]	[Deg]
1.25	1.22	17	0.13	0.359	71
2.43	2.18	17	0.46	0.681	62
3.61	3.09	17	0.98	0.988	54

Particle Identification

Prelim. Results at $(Q^2 = 0.46 \text{ and } 0.98 \text{ GeV}^2)$

Preliminary ³He Target Single Spin Asymmetry

Topic 2: What about A_v for N(e,e') in DIS?

• The formalism remains the same:

A_y=0 for 1-photon exchange

• For DIS, one assumes that the scattering is dominated by two photon exchange with a single quark.

- For non-interacting quarks, $A_v=0$ for two-photon exchange
- Afanasev, Strikman, Weiss (**Phys.Rev.D77:014028,2008**) predict A_y~10⁻⁴ using a model based on the quark transversity distribution.

• This means <u>the SSA should change by two orders of magnitude from DIS</u> <u>to QE kinematics.</u> This is a direct study of the "transition" from hadron-like to parton-like behavior.

- This was measured in Hall A during the transversity experiment E06-010, using the BigBite Spectrometer in singles mode.
- Joe Katich-WM graduate thesis student

Prediction for DIS A_y SU(6) h(x) = g(x)neutron

2

E06-010 Experiment

Measure ³He(e,e') SSA using BB and LHRS in singles mode.

E=5.89 GeV

	LHRS	BB				
		1	2	3	4	
θ (deg)	16.00	29.60	29.60	29.50	28.80	
θ (rad)	0.28	0.52	0.52	0.51	0.50	
E (GeV)	5.89	5.89	5.89	5.89	5.89	
E' (GeV)	2.35	1.12	1.36	1.65	2.05	
v (GeV)	3.54	4.78	4.53	4.25	3.84	
Q ² (GeV ²)	1.07	1.71	2.09	2.51	2.99	
W ² (GeV ²)	6.45	8.13	7.30	6.33	5.09	
X	0.16	0.19	0.25	0.32	0.42	

Electron Identification

Results for n and p

21

JLab 12 GeV upgrade

- New experimental Hall and beamline
- Upgrades to existing Experimental Halls

Kinematics Coverage of the 12 GeV Upgrade

Prediction for higher Q²

Normal analyzing power - neutron

Summary

- Preliminary raw SSA at $Q^2 = 0.46$ and 0.98 GeV² is clearly non-zero and consistent between L-arm and Rarm data with the opposite sign.
- Raw SSA at $Q^2 = 0.13$ GeV² and the systematic uncertainty study for raw asymmetry are ongoing and will be released soon.
- Two new proposals to probe the two-photon exchange at higher Q² with JLab 12 GeV update are in progress.
 (Quasi-Elastic and Deep-Inelastic on ³He(e, e'), led by B. Zhao and V. Sulkosky.)

Cross-check from Ellie (Q² = 0.98 GeV²)

