Polarized Deep Inelastic Scattering

What is d_2^n ?

Experiment
Setup and
Kinematics
Polarized Electron
Beam
Polarized ³He Target
Physics

Preliminary Results

Cross Sections
Asymmetries
Projected Error of $d^{\mathcal{D}}_{\mathcal{D}}$

Summar

Preliminary Results for a Precision Measurement of the Neutron d_2 : Probing the Lorentz Color Force

D. Flay¹, M. Posik¹, D. Parno^{2,3}

¹Temple University ²CENPA, University of Washington ³Carnegie Mellon University

Hall A Collaboration Meeting, 12/15/11

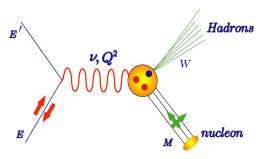
The E06-014
Experiment
Setup and
Kinematics
Polarized Electron
Beam
Polarized ³He Targe
Physics
Measurements

Preliminary
Results
Cross Sections
Asymmetries
Projected Error or d_2^n

Outline

- 1 Polarized Deep Inelastic Scattering
- 2 What is d_2^n ?
- The E06-014 Experiment Setup and Kinematics Polarized Electron Beam Polarized ³He Target Physics Measurements
- 4 Preliminary Results
 Cross Sections
 Asymmetries
 Projected Error on d₂
- 5 Summary

What is d_2^n


Experiment
Setup and
Kinematics
Polarized Electron
Beam

Polarized ³He Targe Physics Measurements

Preliminary
Results
Cross Sections
Asymmetries
Projected Error or d_2^n

Summary

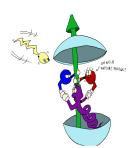
Polarized DIS

- Scatter longitudinally-polarized electrons off of a longitudinally (or transversely) polarized nucleon
- They interact via an exchanged virtual photon
- Probes the spin content of the nucleon
- We measure physics observables like the electron's scattering cross-section and asymmetries

Polarized Deep Inelastic Scattering

What is d_2^n ?

Experiment
Setup and
Kinematics
Polarized Electron
Beam
Polarized ³He Target
Physics


Preliminary
Results
Cross Sections
Asymmetries
Projected Error on

Summary

What is d_2^n ?

The Lorentz Color Force

- A virtual photon probes inside the nucleon and strikes a quark
- The active quark in the interaction feels a force due to the spectator constituents
- d₂ⁿ is a measure of this transverse Lorentz color force (M. Burkardt, hep-ph/0905.4079v1)

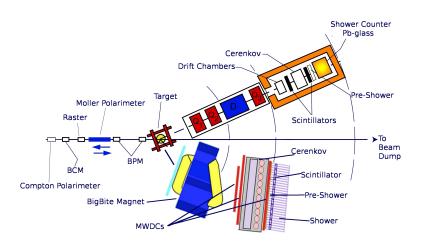
Polarized Deep Inelastic Scattering

What is d_n^n

The E06-01-Experiment

Kinematics
Polarized Electr

Polarized ³He T


Physics Measurements

Preliminary Results

Cross Sections
Asymmetries
Projected Error o d_2^n

Summary

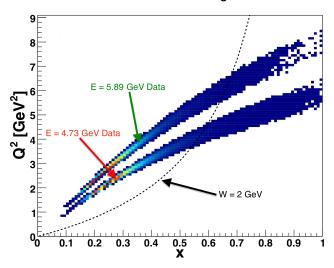
The E06-014 Experiment Setup

What is d_2^n ?

The E06-014
Experiment
Setup and
Kinematics

Polarized Electron Beam

Polarized ³He Targ
Physics
Measurements


Results
Cross Sections
Asymmetries
Projected Error o

Summar

The E06-014 Experiment

Kinematic Coverage

Kinematic Coverage

Polarized Deep Inelastic Scattering

What is d_2^n ?

The E06-014
Experiment
Setup and
Kinematics
Polarized Electron

Beam Polarized ³He Targo Physics Measurements

Preliminary
Results
Cross Sections
Asymmetries
Projected Error of d_{D}^{n}

Summary

The E06-014 Experiment

Electron Beam Polarization

- Two methods: Møller and Compton measurements
- Combine both methods to acheive an error of $\sim 1.6\%$

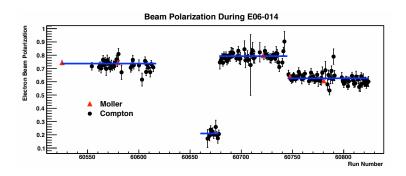


Figure: Compton data analysis by D. Parno. Plot from D. Parno's thesis.

Polarized 3He Target

The E06-014 Experiment

³He Target Polarization

- NMR measurement every four hours (target chamber)
- EPR measurement (pumping chamber)
 - · Polarization values in plot: valid for pumping chamber
 - EPR calibration: achieve an error of $\sim 4.9\%$

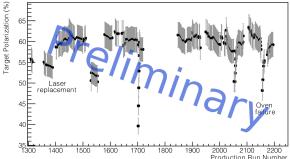


Figure: Target polarization analysis by Y. Zhang.

What is d_2^n

The E06-014
Experiment
Setup and
Kinematics
Polarized Electron
Beam

Physics Measurements

Results
Cross Sections
Asymmetries
Projected Error on

Summary

The Measurement of d_2^n

 Combine our measured cross-sections and asymmetries:

$$\begin{array}{lcl} d_2^n & = & \displaystyle \int_0^1 dx \frac{MQ^2}{4\alpha^2} \frac{x^2y^2}{\left(1-y\right)\left(2-y\right)} {\color{red}\sigma_0} \\ & \times & \left[\left(3\frac{1+\left(1-y\right)\cos\theta}{\left(1-y\right)\sin\theta} + \frac{4}{y}\tan\left(\theta/2\right)\right) {\color{blue}A_\perp} + \left(\frac{4}{y}-3\right) {\color{blue}A_\parallel} \right] \end{array}$$

$$A_{\parallel} = \frac{N^{\downarrow \uparrow \uparrow} - N^{\uparrow \uparrow \uparrow}}{N^{\downarrow \uparrow \uparrow} + N^{\uparrow \uparrow \uparrow}} \quad A_{\perp} = \frac{N^{\downarrow \Rightarrow} - N^{\uparrow \Rightarrow}}{N^{\downarrow \Rightarrow} + N^{\uparrow \Rightarrow}} \quad \sigma_0 = \frac{ps \cdot N}{(Q/e)\rho t_{LT}\varepsilon} \frac{1}{w\Delta E'\Delta\Omega\Delta Z}$$

$$\uparrow, \downarrow = e^-$$
 beam spin $\uparrow, \Rightarrow =$ Target spin

Temple
University
Hadronic &
Nuclear
Physics Group

Polarized Deep Inelastic Scattering

What is d_2^n

The E06-014
Experiment
Setup and
Kinematics
Polarized Electron
Beam

Physics Measurements

Results
Cross Sections

Asymmetries
Projected Error of d_2^n

Summary

LHRS Analysis (1)

E = 4.73 GeV Data: Cross Sections

 3 He Cross Section (E = 4.73 GeV, θ = 45 $^\circ$)

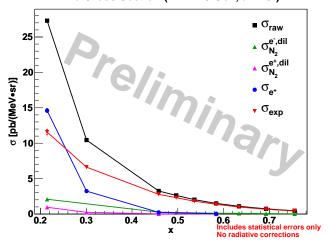


Figure: Cross section analysis by D. Flay.

Temple
University
Hadronic &
Nuclear
Physics Group

Polarized Deep Inelastic Scattering

What is d_2^n

The E06-014
Experiment
Setup and
Kinematics
Polarized Electron
Beam
Polarized ³He Targ

Preliminary Results

Cross Sections
Asymmetries
Projected Error or d_2^n

Summary

LHRS Analysis (2)

E = 5.89 GeV Data: Cross Sections

³He Cross Section (E = 5.89 GeV, θ = 45°)

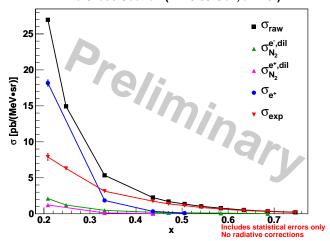


Figure: Cross section analysis by D. Flay.

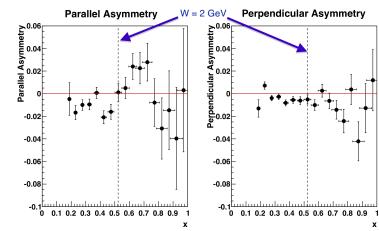
Temple
University
Hadronic &
Nuclear
Physics Group

Polarized
Deep Inelastic
Scattering

What is d_2^n

The E06-014
Experiment
Setup and
Kinematics

Beam Polarized ³He Tar


Physics Measurements

Results
Cross Sections
Asymmetries
Projected Error or

Summar[,]

BigBite Analysis (1)

E = 4.73 GeV Data: A_{\parallel} and A_{\perp}

Includes both statistical and systematic errors. No radiative or pair-production corrections.

Temple
University
Hadronic &
Nuclear
Physics Group

Polarized
Deep Inelastic
Scattering

What is d_2^n ?

The E06-014 Experiment

Kinematics
Polarized Flectro

Beam Polarized ³He Ta

Physics Measurements

Preliminary Results

Asymmetries
Projected Error o

Summary

BigBite Analysis (2)

E = 4.73 GeV Data: $A_1^{^{3}{\rm He}}$

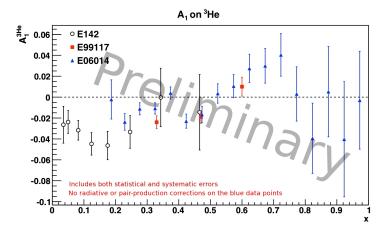
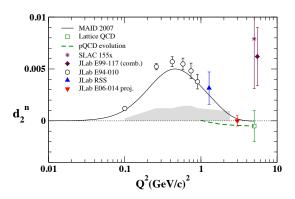


Figure: Asymmetry analysis by D. Parno and M. Posik. Plot from D. Parno's thesis.

Polarized Deep Inelastic Scattering


What is d_2^n

The E06-014
Experiment
Setup and
Kinematics
Polarized Electron
Beam
Polarized ³He Targe

Preliminary
Results
Cross Sections
Asymmetries
Projected Error on

Summar

Projected Error on d_2^n Comparison to Current Data

- Projected statistical error: $\sim 5 \times 10^{-4}$
 - Four times better than current world average
 - Direct test of Lattice QCD

What is d_2^n

The E06-014
Experiment
Setup and
Kinematics
Polarized Electron
Beam
Polarized ³He Target
Physics
Measurements

Preliminary Results
Cross Sections
Asymmetries
Projected Error on d_2^n

Summary

Summary

- Interested in quark-gluon correlations
 - Exploit transverse spin interactions through the g_2 structure function, leading to higher twist effects seen in the matrix element d_2^n
 - Sheds light upon the Lorentz color force inside the nucleon
- Preliminary results for $A_1^{^3{
 m He}}$ are in good agreement with the JLab E99-117 result and provides more complete kinematic coverage with more data points and better statistics
- Our calculation of d_2^n will provide a benchmark test for Lattice QCD

What is d_2^n

The E06-014
Experiment
Setup and
Kinematics
Polarized Electron
Beam
Polarized ³He Target
Physics
Measurements

Preliminary
Results
Cross Sections
Asymmetries
Projected Error on

Summary

Current and Future Work

- Radiative corrections to the cross section and asymmetry data, including finishing up the positron dilution calculations
- Computing the asymmetries for the primary (E = 5.89 GeV) data set
- Extracting the asymmetry A_1^n , $d_2^{^3{\rm He},n}$ and the spin structure functions $g_1^{^3{\rm He},n}$, $g_2^{^3{\rm He},n}$

What is d_2^n ?

Fhe E06-014
Experiment
Setup and
Kinematics
Polarized Electron
Beam
Polarized ³He Target
Physics
Measurements

Preliminary
Results
Cross Sections
Asymmetries
Projected Error on d_{2}^{n}

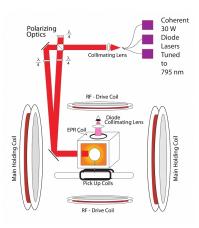
Summary

Acknowledgements

- Thanks to the spokespeople X. Jiang, S. Choi, B. Sawatzky, and Z.-E. Meziani.
- Thanks to P. Solvignon, K. Slifer, V. Sulkosky, C. Dutta, K. Allada, and the rest of the d_2^n , Transversity and the Hall A Collaborations, and the Hall A Staff at Jefferson Lab for their advice, suggestions, and continued support.
- Thank you to Temple University and Carnegie Mellon University.
- Primary analysis team: B. Sawatzky, D. Parno, D. Flay,
 M. Posik, Y. Zhang, G. Franklin, Z.-E. Meziani
- This work is supported by: DOE Award from Temple University #DE-FG02-94ER40844.

What is d_2^n ?

The E06-014 Experiment


Kinematics
Polarized Electron
Beam
Polarized ³He Target

Preliminary Results

Cross Sections
Asymmetries
Projected Error or dn

Summary

Backup (1) 3 He Target

- Vaporized Rb is optically pumped using circularly polarized light to polarize its electrons
- Through hybrid spin-exchange the Rb electrons transfer their spin to K atoms, then K to ³He nuclei

What is d_2^n

The E06-014 Experiment

Polarized Electror Beam

Polarized ³He Targ

Preliminary Results

Cross Sections
Asymmetries
Projected Error on

Summary

Backup (2)

Physics Measurements

• The spin structure functions:

$$g_{1} = \frac{MQ^{2}}{4\alpha^{2}} \frac{2y}{(1-y)(2-y)} \sigma_{0} \left[A_{\parallel} + \tan(\theta/2) A_{\perp} \right]$$

$$g_{2} = \frac{MQ^{2}}{4\alpha^{2}} \frac{y^{2}}{(1-y)(2-y)} \sigma_{0} \left[-A_{\parallel} + \frac{1+(1-y)\cos\theta}{(1-y)\sin\theta} A_{\perp} \right]$$