An Integrating Method for Compton Photon Polarimetry

D. Parno, M. Friend, F. Benmokhtar, G. Franklin, B. Quinn, and the Hall A Compton Group

Beam Polarization

Many experiments in Hall A rely on a highly polarized electron beam:

• Transversity (fall 2008 – winter 2009): double spin asymmetry in SIDIS

•d₂ⁿ (spring 2009): neutron spin structure

• E05-102 (running experiment): groundstate functions of ³He

• PREx (spring 2010): neutron distribution in a heavy nucleus (i.e. ²⁰⁸Pb)

We need to know the beam polarization, but Møller measurements take away beam-on-target time, so they can't be used for continuous monitoring ...

Analyzing Power

- A large GSO cylinder (6 cm diameter, 15 cm length) has been installed in Hall A as the Compton photon detector
- We combine GEANT4 simulations and HI_VS data to understand the detector response function
- PMT nonlinearities also affect the analyzing power
- We use a pulser system with multiple LEDs for precise measurements
- This can be installed in the Hall for regular monitoring

Compton Polarimetry

- The Compton scattering cross section depends on whether the electron and photon have parallel or antiparallel polarizations
- The cross section is very small, so this measurement does not appreciably disturb the electron beam
- Hall A's pre-existing system measures an asymmetry in counting rates
- Our new system measures an asymmetry in energyweighted integrated signal, which is less sensitive to detector thresholds, response function, etc.

Integrating Method

- For the integrating Compton DAQ, we use a Struck FADC that samples at 200 MHz
- Over a 33-ms helicity window, the FADC integrates all samples in an accumulator
- From each accumulator value, we extract a physics signal for that MPS

$$S_n = N_n \overline{S}_n = N_n \overline{P} - Acc_n$$

and then a Compton asymmetry proportional to the beam polarization Beam

polarization Dilution factor Analyzing power

Preliminary Results from d₂ⁿ Running

- To confirm that we have good Compton signal, we take sampling data to measure Compton spectra
- The spectrum should have a distinctive parabolic shape with a sharp edge on the high-energy side

 Planned upgrade to a green Compton laser (double the incident photon energy) will give us access to more of the spectrum at one-pass

- To go from a Compton asymmetry to a beam polarization, we can begin by comparing Compton results to Møller measurements
- We have both integrated data from the new CMU DAQ and counting data from the original Saclay DAQ

