Status Report on the Precision Measurement of d_2^n Experiment E06-014

Diana Parno (Carnegie Mellon University) David Flay, Matthew Posik (Temple University)

December 15, 2009

Diana Parno (Carnegie Mellon)

E06-014 Status Report

Outline

- Why d_2^n Is Worth Measuring
- Measuring d_2^n in Hall A

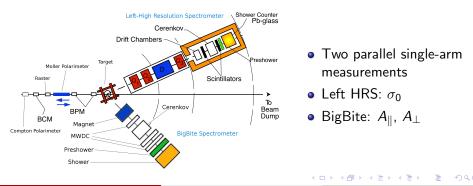
2 Polarimetry

- 3 LHRS Calibration
 - Gain Matching
 - Pion Rejection
- Ø BigBite Calibration
 Ø BigBite Čerenkov

5 Future Work

э

Probing QCD Through Quark-Gluon Interactions


dⁿ₂ gives access to quark-gluon correlations

$$d_2^n(Q^2) = \int_0^1 x^2 \left(2g_1(x, Q^2) + 3g_2(x, Q^2) \right) dx$$

- How do we interpret d_2^n ?
 - Color field response to polarization of a nucleon (X. Ji)
 - Averaged transverse force on a quark just after interaction with a virtual photon (M. Burkardt)
- Large-x contributions dominate d_2^n

Strategy for E06-014

- Scatter a longitudinally polarized electron beam from polarized ³He
- Change the target polarization direction to measure parallel and perpendicular asymmetries
- Kinematic range: $0.2 \le x \le 0.7$ and $2 \le Q^2 \le 6 \text{ GeV}^2$

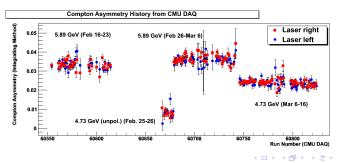
4 / 12

Measuring d_2^n

• Measure total cross section σ_0 and asymmetries ${\it A}_{||}$ and ${\it A}_{\perp}$

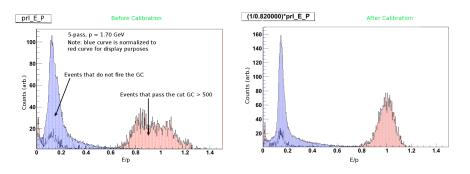
$$A_{\parallel} = rac{\sigma^{\downarrow \Uparrow} - \sigma^{\uparrow \Uparrow}}{2\sigma_0} ext{ and } A_{\perp} = rac{\sigma^{\downarrow \Rightarrow} - \sigma^{\uparrow \Rightarrow}}{2\sigma_0}$$

• From there, we can compute d_2^n :


$$d_{2}^{n}(Q^{2}) = \int_{0}^{1} dx \quad \frac{MQ^{2}}{4\alpha^{2}} \frac{x^{2}y^{2}}{(1-y)(2-y)} \sigma_{0} \\ \left[\left(3 \frac{1+(1-y)\cos\theta}{(1-y)\sin\theta} + \frac{4}{y}\tan\frac{\theta}{2} \right) A_{\perp} + \left(\frac{4}{y} - 3\right) A_{\parallel} \right]$$

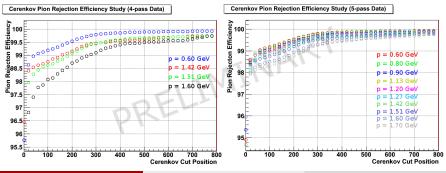
• We can pick up the spin structure functions g_1 and g_2 along the way

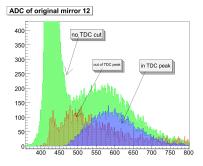
イロト 不得 とくほ とくほ とうほう


Electron Beam Polarimetry

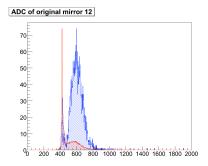
- To compute A_{\parallel} and A_{\perp} , we need precise knowledge of the electron beam polarization
- Polarimetry strategies:
 - Four Moller measurements (1/week) during production running
 - Commissioning of new Compton photon detector, integrating DAQ
- We are nearly finished analyzing Compton polarization data from the new Carnegie Mellon DAQ

Gain Matching

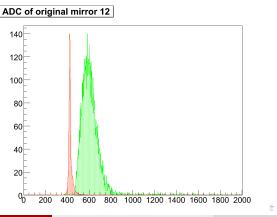

- We must gain-match our PMTs in order to make meaningful comparisons between their ADC spectra
- We have completed this work for
 - Gas Čerenkov (10 PMTs)
 - Pion rejectors (34 blocks in each of two layers)


7 / 12

Pion Rejection Efficiency in Gas Čerenkov


- How efficient is the LHRS gas Čerenkov at excluding pions?
- It depends on the cut position in the Čerenkov
- We can compute the efficiency by testing the Čerenkov's treatment of a pion sample (selected in the pion rejector): $e = 1 N_{\pi}^{Cer} / N_{\pi}^{PR}$
- We're working on a simulation to understand the observed momentum dependence

"Good" Electrons in BigBite Čerenkov


A good electron arrives on time
Cut on TDC peak

- A good electron enters the PMT via the corresponding mirror
 - Cut on reconstructed track

"Good" Electrons in BigBite Čerenkov – Results

- We can get a sense of the background by cutting on off-peak timing in the TDC (red)
- Good electrons show up with both an on-peak TDC cut and a mirror cut (green)

Future Work

Continued calibration work

- Update analyzer Čerenkov class
- BigBite optics
- BigBite shower calibration
- LHRS efficiencies (electron detection, pion rejection, cuts)
- Target analysis

Simulation work

- Pion rejectors
- Compton photon detector

3

Acknowledgments

- Thank you to the Hall A collaboration, especially:
 - Brad, Zein-Eddine, Gregg, Lamiaa
 - Patricia, Vince
 - Xin, Jin, Kalyan, Chiranjib
 - Our run coordinators and shift crews

3